+0  
 
+1
1
1
avatar+119 

Evaluate \(\int_{1}^{2}e^{2 \ln x} dx\)

 
 Jan 27, 2026
 #1
avatar+119 
+1

Step one: State the integral to evaluate

 

\(\int_{1}^{2}e^{2 \ln x}dx\)

 

Step two: Apply the logarithm power rule

 

\(2 \ln x=\ln (x^2)\)

Rewrite

\(e^{\ln(x^2)}\)

Step three: Cancel inverse functions

\(e^{ln(x^2)}=x^2\)

 

Sub into integral:

 

\(I=\int^{2}_{1} x^2 dx\)

Evaluate

\(\int x^2dx=\frac{x^3}{3}+C\)

Apply the fundamental theorem of calculus, calculate the upper minus lower bound antiderivative

\(\frac{2^3}{3} = \frac{8}{3}\)\(\frac{1^3}{3} = \frac{1}{3}\)

 \(\boxed{\frac{8}{3}-\frac{1}{3} = \frac{7}{3}}\)

 Jan 27, 2026

0 Online Users