+0  
 
0
927
1
avatar+146 

im taking an online class and i dont get how to expand the binomial (2x+5)^5 can someone explain how i would do this?

 Oct 29, 2014

Best Answer 

 #1
avatar+23252 
+5

If you use combinations:  (2x + 5) ^ 5:

5nCr5·(2x)^5·(5)^0  +  5nCr4·(2x)^4·(5)^1  +  5nCr3·(2x)^3·(5)^2  +      5nCr2·(2x)^2·(5)^3  + 5nCr1·(2x)^1·(5)^4  +  5nCr0·(2x)^0·(5)^5

= 1·32x^5·1  + 5·16x^4·5  +  10·8x^3·25  +  10·4x^2·125  +  5·2x·625  +  1·x^0·3125

=  160x^5  +  400x^4  +  2000x^3  +  5000x^2  +  6250x + 3125

 
 Oct 29, 2014
 #1
avatar+23252 
+5
Best Answer

If you use combinations:  (2x + 5) ^ 5:

5nCr5·(2x)^5·(5)^0  +  5nCr4·(2x)^4·(5)^1  +  5nCr3·(2x)^3·(5)^2  +      5nCr2·(2x)^2·(5)^3  + 5nCr1·(2x)^1·(5)^4  +  5nCr0·(2x)^0·(5)^5

= 1·32x^5·1  + 5·16x^4·5  +  10·8x^3·25  +  10·4x^2·125  +  5·2x·625  +  1·x^0·3125

=  160x^5  +  400x^4  +  2000x^3  +  5000x^2  +  6250x + 3125

 
geno3141 Oct 29, 2014

1 Online Users

avatar