Write the following expression as a single combination $\binom{n}{k}$ so that $k \neq 1$ and $n-k \neq 1.$ \binom{3}{1} + \binom{3}{2} = ?
The expression (kn)+(n−kn) is always equal to (kn+1), which can be proven using Pascal's identity. Therefore, \begin{align*} \binom{3}{1} + \binom{3}{2} &= \binom{3 + 1}{1} \ &= \boxed{\binom{4}{1}}. \end{align*}
The question specifies that \(k \ne 1\)
****