Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
1095
4
avatar+847 

If (w+13)2=(3w+7)(2w+4) , find w2 . Express your answer as a decimal.

 Dec 29, 2017
 #1
avatar
+2

Solve for w:
(w + 13)^2 = (2 w + 4) (3 w + 7)

Write the quadratic polynomial on the right-hand side in standard form.


Expand out terms of the right-hand side:
(w + 13)^2 = 6 w^2 + 26 w + 28

 

Move everything to the left-hand side.
Subtract 6 w^2 + 26 w + 28 from both sides:
-28 - 26 w - 6 w^2 + (w + 13)^2 = 0

 

Write the quadratic polynomial on the left-hand side in standard form.
Expand out terms of the left-hand side:
141 - 5 w^2 = 0

 

Isolate terms with w to the left-hand side.
Subtract 141 from both sides:
-5 w^2 = -141

 

Divide both sides by a constant to simplify the equation.
Divide both sides by -5:
w^2 =± 141/5

 Dec 29, 2017
 #2
avatar+9488 
+4

(w + 13)2  =  (3w + 7)(2w + 4)

                                                                   First multiply out the parenthesees on both sides.

(w + 13)(w + 13)   =   (3w + 7)(2w + 4)

 

w2 + 13w + 13w + 169   =   6w2 + 12w + 14w + 28

 

w2 + 26w + 169   =   6w2 + 26w + 28

                                                                   Subtract  26w  from both sides.

w2 + 169  =  6w2 + 28

                                                                   Subtract  w2  from both sides.

169  =  5w2 + 28

                                                                   Subtract  28  from both sides.

141  =  5w2

                                                                   Divide both sides by  5 .

141/5  =  w2

 

w2  =  28.2

 Dec 29, 2017
 #3
avatar+199 
+4

We expand both sides to find

(w+13)(w+13)=(3w+7)(2w+4)w2+26w+169=3w(2w+4)+7(2w+4)w2+26w+169=6w2+12w+14w+28w2+26w+169=6w2+26w+28w2+169=6w2+28141=5w21415=w2.



So, expressed as a decimal, our answer is 1415=28.2 .

 Dec 29, 2017
 #4
avatar+118696 
0

Hi Azsun...

 

I am seriously wondering why your LaTex is displaying properly when no one elses is ???

 

How strange...

Melody  Jan 8, 2018

3 Online Users

avatar