+0  
 
0
31
1
avatar+1439 

In triangle $ABC$, let $I$ be the incenter of triangle $ABC$. The line through $I$ parallel to $BC$ intersects $AB$ and $AC$ at $M$ and $N$, respectively. If $AB = 5$, $AC = 5$, and $BC = 8$, then find the area of triangle $AMN$.

 Jan 23, 2024
 #1
avatar+129850 
+1

 

 

Let  B = (0,0)

C =(8,0)

Construct  a circle with a radius of  5  centered at B

The equation is  x^2 + y^2  =  25

Since AB = AC, the triangle is isosceles and A = (BC/2, y)  = (8/2, y)  = (4,y)

The x coordinate of A = 4

To find y

4^2 + y^2  =25

16 + y^2  = 25

y^2 = 9

y = 3 =   the height of ABC

So  A = (4,3)

 

The incenter will occur at   (4, m)

To find m

[ 5*0  + 5*0+ 8*3 ] /[5 + 5 + 8]  =   24 / 18 =  4/3

So I = (4, 4/3)

 

Triangles ABC and AMN are similar

[ABC]  = (1/2)(BC)(height) = (1/2) (8) (3)  =  12

 

Height of AMN  = 3 - 4/3 =  5/3

Scale factor of AMN to ABC  = (5/3) / 3  =  5/9

 

Area of AMN  = Area of ABC * (5/9)^2 =   12 (5/9)^2   =  100 / 27

 

 

cool cool cool

 Jan 24, 2024

3 Online Users