+0  
 
0
448
1
avatar+466 

Show that replacing k with k + 1 in problem (a) yields and expression equivalent to (b):

(a) 3(3k - 1)/2        (b) 3(3k - 1)/2 + 3k+1

Halp!!!!!!!

Shades  Feb 18, 2016

Best Answer 

 #1
avatar+89865 
+10

Shades....I'm going to show that (b) can be made to look like (a) where k is replaced by  k + 1

 

All you would need to do is to reverse the steps  [if you wanted to ]

 

3(3^k - 1)/2 + [ 3^(k+1)]   =

 

Note 3^(k +1)  = 3*3^k........also....split the first term into two fractions

 

[3*3^k ]/ 2   - 3/2   +    [3*3^k]  =    

 

Get a common denominator in the third fraction by multiplying by 2 on top/bottom

 

[3*3^k ]/ 2   - 3/2   +    2*[3*3^k]/2

 

Put everything over 2

 

(3*3^k  - 3  + 2*[3*3^k] ) / 2  =

 

[3*3^k - 3  + 6*3^k] / 2  =

 

Combine like terms

 

[9*3^k - 3] / 2  =       

 

Factor out a  3

 

3 [3*3^k -1] / 2  =

 

Note again, 3*3^k  =  3^(k + 1)

 

3 [ 3^(k + 1)  - 1] / 2

 

 

cool cool cool

CPhill  Feb 18, 2016
edited by CPhill  Feb 18, 2016
edited by CPhill  Feb 18, 2016
 #1
avatar+89865 
+10
Best Answer

Shades....I'm going to show that (b) can be made to look like (a) where k is replaced by  k + 1

 

All you would need to do is to reverse the steps  [if you wanted to ]

 

3(3^k - 1)/2 + [ 3^(k+1)]   =

 

Note 3^(k +1)  = 3*3^k........also....split the first term into two fractions

 

[3*3^k ]/ 2   - 3/2   +    [3*3^k]  =    

 

Get a common denominator in the third fraction by multiplying by 2 on top/bottom

 

[3*3^k ]/ 2   - 3/2   +    2*[3*3^k]/2

 

Put everything over 2

 

(3*3^k  - 3  + 2*[3*3^k] ) / 2  =

 

[3*3^k - 3  + 6*3^k] / 2  =

 

Combine like terms

 

[9*3^k - 3] / 2  =       

 

Factor out a  3

 

3 [3*3^k -1] / 2  =

 

Note again, 3*3^k  =  3^(k + 1)

 

3 [ 3^(k + 1)  - 1] / 2

 

 

cool cool cool

CPhill  Feb 18, 2016
edited by CPhill  Feb 18, 2016
edited by CPhill  Feb 18, 2016

52 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.