Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.
\(y = 7sin(x)\)
\(y = 7cos(x)\)

\(0 <= x <= \pi /4\)
rotates about y=-1

I've tried every answer I could, but still couldn't figure it out
Please help <3

StayCurly  Sep 14, 2018

Like so:


Alan  Sep 15, 2018

I just lifted everything by one unit and it becomes


Find the volume formed when the region between the graphs  y=7sinx+1   and   y=7cosx+1  for  0<=x<=pi/4

is rotated around the line y=0


\(Volume = \displaystyle \pi\int_0^{\pi/4}\;\left[(7cosx+1)^2-(7sinx+1)^2 \right]dx\\ Volume = \displaystyle \pi\int_0^{\pi/4}\;\left[(49cos^2x+1+14cosx)-(49sin^2x+1+14sinx) \right]dx\\ Volume = \displaystyle \pi\int_0^{\pi/4}\;\left[(49cos^2x-49sin^2x+14cosx-14sinx) \right]dx\\ Volume = \displaystyle \pi\int_0^{\pi/4}\;\left[49(cos^2x-sin^2x)+14cosx-14sinx) \right]dx\\ Volume = \displaystyle \pi\int_0^{\pi/4}\;\left[49(cos2x)+14cosx-14sinx) \right]dx\\ Volume =\pi\left[ \frac{49sin2x}{2}+14sinx+14cosx \right]^{\pi/4}_0\\ Volume =\pi\left[ \frac{49}{2}+\frac{14}{\sqrt2}+\frac{14}{\sqrt2} \right]-\pi\left[ 14 \right]\\ Volume =\pi\left[ \frac{49}{2}+\frac{14\sqrt2}{2}+\frac{14\sqrt2}{2}-\frac{28}{2} \right]\\ Volume =\pi\left[ \frac{41}{2}+\frac{28\sqrt2}{2}\right]\\ Volume =\frac{\pi}{2}\left[ 41+28\sqrt2\right]\quad units^3\)




Here is the original graph




I have lifted everyting by 1 unit to make it easier to work with


Melody  Sep 15, 2018

17 Online Users


New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.