Calculate the gravitational field strength on the moon.
$$\small{\text{Newton's Law of Gravitation: }} F=\boxed{G*\frac{m_1*m_2}{r^2}=m_2*g}\\
\small{\text{$
g_{moon}=G*\dfrac{m_{moon}}{r_{moon}^2}
\qquad G= 6.673 * 10^{-11} * \frac { N*\ m^2 } { kg^2 }
\qquad m_{moon}=7.349*10^{22}\ kg
\qquad r_{moon}=1.738*10^6\ m
$
}}\\\\
\small{\text{$
g_{moon}=6.673 * 10^{-11}*\dfrac{ 7.349*10^{22} }{ (1.738*10^6)^2}* \frac{N*\ m^2 *\ kg
}{ kg^2*\ m^2 }
= \dfrac{ 6.673*7.349 * 10^{-11+22-12}} { 1.738^2 } * \frac { N } { kg }
$
}}\\\\
\small{\text{$
g_{moon}= \dfrac{ 6.673*7.349 * 10^{-1}} { 1.738^2 } * \frac { \dfrac{kg*\ m }{s^2} } { kg }
$
}}\\\\
\small{\text{$
g_{moon}= 1.62349078541 * \dfrac{ m }{s^2}$
}}$$
Calculate the gravitational field strength on the moon.
$$\small{\text{Newton's Law of Gravitation: }} F=\boxed{G*\frac{m_1*m_2}{r^2}=m_2*g}\\
\small{\text{$
g_{moon}=G*\dfrac{m_{moon}}{r_{moon}^2}
\qquad G= 6.673 * 10^{-11} * \frac { N*\ m^2 } { kg^2 }
\qquad m_{moon}=7.349*10^{22}\ kg
\qquad r_{moon}=1.738*10^6\ m
$
}}\\\\
\small{\text{$
g_{moon}=6.673 * 10^{-11}*\dfrac{ 7.349*10^{22} }{ (1.738*10^6)^2}* \frac{N*\ m^2 *\ kg
}{ kg^2*\ m^2 }
= \dfrac{ 6.673*7.349 * 10^{-11+22-12}} { 1.738^2 } * \frac { N } { kg }
$
}}\\\\
\small{\text{$
g_{moon}= \dfrac{ 6.673*7.349 * 10^{-1}} { 1.738^2 } * \frac { \dfrac{kg*\ m }{s^2} } { kg }
$
}}\\\\
\small{\text{$
g_{moon}= 1.62349078541 * \dfrac{ m }{s^2}$
}}$$