+0  
 
0
3174
6
avatar

Fill the series 5,7,17,47,115,? find the value in the "?".

 Feb 2, 2016

Best Answer 

 #4
avatar+26388 
+40

Fill the series 5,7,17,47,115,? find the value in the "?".

 

The function is:

\(\small{ \begin{array}{rcl} a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } + \binom{n-1}{2}\cdot {\color{red}d_2 } + \binom{n-1}{3}\cdot {\color{red}d_3 } + \binom{n-1}{4}\cdot {\color{red}d_4 } \\\\ a_n &=& d_0 + (n-1)d_1 \\ &+& \frac12 (n-1)(n-2)d_2\\ &+& \frac13\cdot \frac12 (n-1)(n-2)(n-3)d_3 \\ &+& \frac14\cdot \frac13 \cdot \frac12 (n-1)(n-2)(n-3)(n-4)d_4 \\\\ a_n &=&d_0+ (n-1) \{d_1+(n-2)[\frac12 d_2+(n-3)( \frac16 d_3 + \frac{1}{24}(n-4)d_4) ] \} \\ \dots \\ a_n &=& d_0 -d_1+d_2-d_3+d_4 \\ &+& n\cdot \left( \frac{12d_1-18d_2+22d_3-25d_4}{12} \right) \\ &+& n^2\cdot \left( \frac{12d_2-24d_3+35d_4}{24} \right) \\ &+& n^3\cdot \left( \frac{4d_3-10d_4}{24} \right) \\ &+& n^4\cdot \left( \frac{d_4}{24} \right) \\\\ \end{array} }\)

 

we have:

 

\(d_0 = 5\\ d_1 = 2\\ d_2 = 8\\ d_3 = 12\\ d_4 = 6\)

 

\(\begin{array}{rcl} a_n &=& d_0 -d_1+d_2-d_3+d_4 \\ &+& n\cdot \left( \frac{12d_1-18d_2+22d_3-25d_4}{12} \right) \\ &+& n^2\cdot \left( \frac{12d_2-24d_3+35d_4}{24} \right) \\ &+& n^3\cdot \left( \frac{4d_3-10d_4}{24} \right) \\ &+& n^4\cdot \left( \frac{d_4}{24} \right) \\\\ a_n &=& 5-2+8-12+6\\ &+& n\cdot \left( \frac{12\cdot 2-18\cdot 8+22\cdot 12-25\cdot 6}{12} \right) \\ &+& n^2\cdot \left( \frac{12\cdot 8-24\cdot 12+35\cdot 6}{24} \right) \\ &+& n^3\cdot \left( \frac{4\cdot 12-10\cdot 6}{24} \right) \\ &+& n^4\cdot \left( \frac{6}{24} \right) \\\\ a_n &=& 5\\ &-& \frac12 \cdot n\\ &+& \frac34 \cdot n^2 \\ &-& \frac12 \cdot n^3 \\ &+& \frac14 \cdot n^4\\\\ a_n &=& 5 - \frac12 \cdot n + \frac34 \cdot n^2 - \frac12 \cdot n^3 + \frac14 \cdot n^4 \end{array}\)

 

laugh

 Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
 #1
avatar+33659 
+15

One possibility is 245:

 

sequence

.

 Feb 2, 2016
 #2
avatar+118667 
0

Very impressive but how did you work it out Alan?  

 

It wasn't even in the oeis ....

 Feb 2, 2016
 #3
avatar+26388 
+5

Fill the series 5, 7, 17, 47, 115, ?  find the value in the "?".

 

\(\small{ \begin{array}{lrrrrrrrrrr} & {\color{red}d_0 = 5} && 7 && 17 && 47 && 115 && \cdots \\ \text{1. Difference } && {\color{red}d_1 = 2} && 10 && 30 && 68 && \cdots \\ \text{2. Difference } &&& {\color{red}d_2 = 8} && 20 && 38 && \cdots \\ \text{3. Difference } &&&& {\color{red}d_3 = 12} && 18 && \cdots \\ \text{4. Difference } &&&&& {\color{red}d_4 = 6} && \cdots \\ \end{array} } \)

 

\(\boxed{~ \begin{array}{rcl} a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } + \binom{n-1}{2}\cdot {\color{red}d_2 } + \binom{n-1}{3}\cdot {\color{red}d_3 } + \binom{n-1}{4}\cdot {\color{red}d_4 } \end{array} ~} \\\\ \)

 

\(\begin{array}{rcl} a_n &=& \binom{n-1}{0}\cdot {\color{red} 5 } + \binom{n-1}{1}\cdot {\color{red} 2 } + \binom{n-1}{2}\cdot {\color{red} 8 } + \binom{n-1}{3}\cdot {\color{red} 12 } + \binom{n-1}{4}\cdot {\color{red} 6 } \\\\ a_{6} &=& \binom{5}{0}\cdot {\color{red} 5 } + \binom{5}{1}\cdot {\color{red} 2 } + \binom{5}{2}\cdot {\color{red} 8 } + \binom{5}{3}\cdot {\color{red} 12 } + \binom{5}{4}\cdot {\color{red} 6 } \\\\ a_{6} &=& 1\cdot {\color{red} 5 } + 5\cdot {\color{red} 2 } + 10\cdot {\color{red} 8 } + 10\cdot {\color{red} 12 } + 5\cdot {\color{red} 6 } \\\\ a_{6} &=& 5+10+80+120+30 \\\\ \mathbf{a_{6}} & \mathbf{=}& \mathbf{245} \end{array}\)

 

laugh

 Feb 2, 2016
 #4
avatar+26388 
+40
Best Answer

Fill the series 5,7,17,47,115,? find the value in the "?".

 

The function is:

\(\small{ \begin{array}{rcl} a_n &=& \binom{n-1}{0}\cdot {\color{red}d_0 } + \binom{n-1}{1}\cdot {\color{red}d_1 } + \binom{n-1}{2}\cdot {\color{red}d_2 } + \binom{n-1}{3}\cdot {\color{red}d_3 } + \binom{n-1}{4}\cdot {\color{red}d_4 } \\\\ a_n &=& d_0 + (n-1)d_1 \\ &+& \frac12 (n-1)(n-2)d_2\\ &+& \frac13\cdot \frac12 (n-1)(n-2)(n-3)d_3 \\ &+& \frac14\cdot \frac13 \cdot \frac12 (n-1)(n-2)(n-3)(n-4)d_4 \\\\ a_n &=&d_0+ (n-1) \{d_1+(n-2)[\frac12 d_2+(n-3)( \frac16 d_3 + \frac{1}{24}(n-4)d_4) ] \} \\ \dots \\ a_n &=& d_0 -d_1+d_2-d_3+d_4 \\ &+& n\cdot \left( \frac{12d_1-18d_2+22d_3-25d_4}{12} \right) \\ &+& n^2\cdot \left( \frac{12d_2-24d_3+35d_4}{24} \right) \\ &+& n^3\cdot \left( \frac{4d_3-10d_4}{24} \right) \\ &+& n^4\cdot \left( \frac{d_4}{24} \right) \\\\ \end{array} }\)

 

we have:

 

\(d_0 = 5\\ d_1 = 2\\ d_2 = 8\\ d_3 = 12\\ d_4 = 6\)

 

\(\begin{array}{rcl} a_n &=& d_0 -d_1+d_2-d_3+d_4 \\ &+& n\cdot \left( \frac{12d_1-18d_2+22d_3-25d_4}{12} \right) \\ &+& n^2\cdot \left( \frac{12d_2-24d_3+35d_4}{24} \right) \\ &+& n^3\cdot \left( \frac{4d_3-10d_4}{24} \right) \\ &+& n^4\cdot \left( \frac{d_4}{24} \right) \\\\ a_n &=& 5-2+8-12+6\\ &+& n\cdot \left( \frac{12\cdot 2-18\cdot 8+22\cdot 12-25\cdot 6}{12} \right) \\ &+& n^2\cdot \left( \frac{12\cdot 8-24\cdot 12+35\cdot 6}{24} \right) \\ &+& n^3\cdot \left( \frac{4\cdot 12-10\cdot 6}{24} \right) \\ &+& n^4\cdot \left( \frac{6}{24} \right) \\\\ a_n &=& 5\\ &-& \frac12 \cdot n\\ &+& \frac34 \cdot n^2 \\ &-& \frac12 \cdot n^3 \\ &+& \frac14 \cdot n^4\\\\ a_n &=& 5 - \frac12 \cdot n + \frac34 \cdot n^2 - \frac12 \cdot n^3 + \frac14 \cdot n^4 \end{array}\)

 

laugh

heureka Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
edited by heureka  Feb 2, 2016
 #5
avatar+33659 
0

I just fitted a 4th order polynomial to the sequence.  \(f(n)=\Sigma_{k=0}^4 a_kn^k\)

 

There are five unknowns (the ak) and five numbers in the sequence.

 Feb 2, 2016
 #6
avatar
+5

5            7               17             47               115                 X  (245)

      +2            +10           +30             +68               +130

 

 

             +8               +20             +38           +62

 

 

                     +12               +18              +24

 

                               +6                 +6

 

 

 

18+6=24

38+24=62

68+62=130

115+130=245

 Feb 27, 2016

0 Online Users