We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
197
1
avatar+322 

 

Suppose f and g are continuous functions such that 

g(9) = 6 and lim x → 9 [3f(x) + f(x)g(x)] = 27.

 

Find f(9).

 Feb 6, 2019

Best Answer 

 #1
avatar+6045 
+1

\(\lim \limits_{x \to 9} \left(3f(x) + f(x)g(x)\right) = 27\\ 3 \lim \limits_{x \to 9} f(x) + \lim \limits_{x \to 9} f(x)g(x) = 27\\ 3 \lim \limits_{x \to 9} f(x) + g(9) \lim \limits_{x \to 9} f(x) = 27\\ 3 \lim \limits_{x \to 9} f(x) +6 \lim \limits_{x \to 9} f(x) = 27\\ 9 \lim \limits_{x \to 9} f(x) = 27\\ \lim \limits_{x \to 9} f(x) = 3 \\ f \text{ is given to be continuous so }\\ f(9) = \lim \limits_{x \to 9} f(x) = 3\)

.
 Feb 6, 2019
 #1
avatar+6045 
+1
Best Answer

\(\lim \limits_{x \to 9} \left(3f(x) + f(x)g(x)\right) = 27\\ 3 \lim \limits_{x \to 9} f(x) + \lim \limits_{x \to 9} f(x)g(x) = 27\\ 3 \lim \limits_{x \to 9} f(x) + g(9) \lim \limits_{x \to 9} f(x) = 27\\ 3 \lim \limits_{x \to 9} f(x) +6 \lim \limits_{x \to 9} f(x) = 27\\ 9 \lim \limits_{x \to 9} f(x) = 27\\ \lim \limits_{x \to 9} f(x) = 3 \\ f \text{ is given to be continuous so }\\ f(9) = \lim \limits_{x \to 9} f(x) = 3\)

Rom Feb 6, 2019

20 Online Users

avatar