+0

# can anyone help

0
114
2

ABCD is a square. Given PA = 1; PB=3 and PD=7​, find the area of square ABCD. Jun 23, 2020

#1
0

This is what I did:

1)  I looked at triangle(BAP) and used the Law of Cosines to find angle(BAP).

I set the length of AB = x.

BP2  =  AP2 + AB2 - 2·AP·AB·cos( BAP )

32  =  12 + x2 - 2·1·x·cos( BAP )

9  =  1 + x2 - 2x·cos( BAP )

( 8 - x2 ) / ( -2x )  =  cos( BAP )

cos( BAP ) =  ( x2 - 8 ) / (2x )

2)  Then, I looked at triangle(DAP) and used the Law of Cosines to find angle(DAP).

Since it's a square, AD = x.

72  =  12 + x2 - 2·1·x·cos( DAP )

49  =  1 + x2 - 2x·cos( DAP )

( 48 - x2 ) / ( -2x )  =  cos( DAP )

cos( DAP ) =  ( x2 - 48 ) / (2x )

3)  Since angle(DAP) = 90o - angle(BAP)   --->   cos( DAP )  =  sin( BAP )

--->   sin( BAP )  =  ( x2 - 48 ) / (2x )

4)  Since  sin2( BAP ) + cos2( BAP )  =  1

[ ( x2 - 48 ) / (2x ) ]2  +  [ ( x2 - 8 ) / (2x ) ]2  =  1

[ ( x4 - 96x2 + 2304 ) / ( 4x2 ) ]  +  [ ( x4 - 16x2 + 64 ) / ( 4x2 ) ]  =  1

multiplying both sides by 4x2:

( x4 - 96x2 + 2304 )  +  ( x4 - 16x2 + 64 )  =  4x2

2x4 - 116x2  + 2368  =  0

But this doesn't have any real solutions?

Where did I mess up?

Jun 24, 2020
#2
0

ABCD is a rectangle. Given PA = 1; PB=3 and PD=7​, find the area of rectangle ABCD.

Let angle BAP be 45º

Draw the altitudes from point P to point M on side AB, and to point N on side AD.

MP = NP = sqrt( 0.5) = 0.707106781

MB = sqrt ( 32 - 0.5 ) = 2.915475947

ND = sqrt ( 72 - 0.5 ) = 6.964194139

Area  = ( AN + ND )*( AM + MB ) Jun 25, 2020