First, all equations need to equal y.
\(3y=-x-3\)
\(y=\frac{x-3}{3}\)
----
\(2y-14=4x\)
\(2y=4x+14\)
\(y=2x+7\)
----
\(4x-3-y=0\)
\(y=4x-3\)
----
\(-3y=x-12\)
\(y=\frac{x-12}{-3}\)
Next, plug all equations into a graphing calculator. It should look something like this. (I've made the lines thicker and made the points orange)
Aaaaaand I don't know what b means. Eh, 1 out of 2 isn't that bad ¯\_(ツ)_/¯
please help cant figure out
\(\begin{array}{|lrcll|} \hline (1) & 3y &=& -x-3 \quad & | \quad :3 \\ &\mathbf{ y} &\mathbf{=}& \mathbf{-\frac13 x-1} \\\\ (2) & 2y-14 &=& 4x \\ & 2y &=& 4x - 14 \\ & \mathbf{y} &\mathbf{=}& \mathbf{2x + 7} \\\\ (3) & 4x-3-y &=& 0 \\ & \mathbf{y} &\mathbf{=}& \mathbf{4x-3} \\\\ (4) & x-12 &=& -3y \\ & 3y &=& -x+12 \quad & | \quad :3 \\ &\mathbf{ y} &\mathbf{=}& \mathbf{-\frac13 x+4} \\ \hline \end{array}\)
A The lines form a aquadrilateral
B The lines (1) and (4) have the same slope.