+0  
 
0
106
1
avatar

In this problem, \(a\), \(b\), \(c\), and \(d\), are nonzero integers If  \({{a} \over b} \) is added to \(x\), the sum is  \({{c} \over d}\). Which statement can be used to prove that  \(x\) must be a rational number?

 

a)  \(x = {{c-a} \over d-b}\)

 

b)  \(x = {{c+a} \over d-b}\)

 

c)  \(x = {{cb-ad} \over bd}\)

 

d)  \(x = {{cb+ad} \over bd}\)

 May 1, 2021
 #1
avatar+121000 
+2

x +  a/b =  c/d

 

x =  c/d -  a/b

 

x = ( cb  -  ad) /  ( bd)  

 

 

cool cool cool

 May 1, 2021

13 Online Users

avatar
avatar
avatar