+0  
 
0
611
4
avatar

can someone help me find the limit of [1/(x+4)]-1/4 over x

 Oct 13, 2015

Best Answer 

 #1
avatar+118723 
+10

 

 

\(\displaystyle\lim_{x\rightarrow ??} \frac{ \frac{1}{(x+4)}-\frac{1}{4} }{ x}\)

 

 

OK Is this what you want and what does x approach ???

 Oct 13, 2015
edited by Melody  Oct 13, 2015
 #1
avatar+118723 
+10
Best Answer

 

 

\(\displaystyle\lim_{x\rightarrow ??} \frac{ \frac{1}{(x+4)}-\frac{1}{4} }{ x}\)

 

 

OK Is this what you want and what does x approach ???

Melody Oct 13, 2015
edited by Melody  Oct 13, 2015
 #4
avatar+33661 
0

If this is

 

 \(\lim_{x\rightarrow 0}\frac{\frac{1}{x+4}-\frac{1}{4}}{x}\)

 

then write it as 

 

\(\lim_{x\rightarrow 0}\frac{\frac{1}{4(1+x/4)}-\frac{1}{4}}{x}\rightarrow \lim_{x\rightarrow 0}\frac{(1+x/4)^{-1}-1}{4x}\rightarrow \lim_{x\rightarrow 0}\frac{1-x/4+...-1}{4x}\rightarrow \lim_{x\rightarrow 0}\frac{-x/4+...}{4x}\rightarrow -\frac{1}{16}\)

 Oct 13, 2015

1 Online Users