+0

# Can someone help me I do not understand the question

0
39
3

Simplify $i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.$

Guest Jan 11, 2018
Sort:

#1
+80793
+1

$$$i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.$$$

Note that

i1  = i

i2  = -1

i3  =  i * i2  =  i * -1  =  - i

i4  =  i2 * i2  =  -1 * - 1  =  1

So....the sum of these  = 0

And this pattern continues for each partial sum of

i1+4n, i2+4n, i3 + 4n and i4 + 4n       where  n is an integer ≥ 0

So......we  will have

0  +  0  + 0  +  .......+  0  + 0  +  i97 + i98 + i99  =

i1+ 4(24)  +  i 2 + 4(24)  + i 3 + 4(24)   =

[    i    ]     +  [    -1   ]        +    [  - i  ]    =

-1

CPhill  Jan 11, 2018
#3
+18827
+1

Can someone help me I do not understand the question

Simplify $$i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.$$

Geometric sequence ratio = i

$$\begin{array}{|rcll|} \hline s_{99} &=& \frac{ i - i^{100} } {1-i} \qquad & | \qquad i^{100} = i^{2\cdot 50} = (i^2)^{50} = (-1)^{50} = 1 \\\\ s_{99} &=& \frac{ i - 1 } {1-i} \\\\ s_{99} &=& - \left( \frac{ 1 - i } {1-i} \right) \\\\ s_{99} &=& - 1 \\ \hline \end{array}$$

heureka  Jan 11, 2018

### 22 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details