+0  
 
0
197
3
avatar

Simplify \[i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.\]

Guest Jan 11, 2018
 #1
avatar+88898 
+1

 \( \[i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.\]\)

 

Note that

 

i1  = i

i2  = -1

i3  =  i * i2  =  i * -1  =  - i

i4  =  i2 * i2  =  -1 * - 1  =  1

 

So....the sum of these  = 0

 

And this pattern continues for each partial sum of

i1+4n, i2+4n, i3 + 4n and i4 + 4n       where  n is an integer ≥ 0

 

So......we  will have

 

0  +  0  + 0  +  .......+  0  + 0  +  i97 + i98 + i99  =

 

i1+ 4(24)  +  i 2 + 4(24)  + i 3 + 4(24)   =

 

[    i    ]     +  [    -1   ]        +    [  - i  ]    =

 

 

-1

 

 

 

cool cool cool

CPhill  Jan 11, 2018
 #3
avatar+20013 
+1

Can someone help me I do not understand the question

Simplify \(i^1+i^2+i^3+\cdots+ i^{97} + i^{98}+i^{99}.\)

 

Geometric sequence ratio = i

\(\begin{array}{|rcll|} \hline s_{99} &=& \frac{ i - i^{100} } {1-i} \qquad & | \qquad i^{100} = i^{2\cdot 50} = (i^2)^{50} = (-1)^{50} = 1 \\\\ s_{99} &=& \frac{ i - 1 } {1-i} \\\\ s_{99} &=& - \left( \frac{ 1 - i } {1-i} \right) \\\\ s_{99} &=& - 1 \\ \hline \end{array} \)

 

laugh

heureka  Jan 11, 2018

33 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.