+0  
 
0
588
3
avatar

(2x-10)(x+5)=x^2+10x-75

that's what i did:

2x^2-50=x^2+10x-75

2x^2-x^2-10x=50-75

x^2-10x=-25

x(x-10)=-25

 

so what's the next step?

 Nov 19, 2014

Best Answer 

 #1
avatar+26393 
+11

(2x-10)(x+5)=x^2+10x-75

 

okay:  x^2-10x=-25

now: $$x^2-10x+25=0$$

use the abc - formula:

if $$ax^2+bx+c = 0$$ than $$x_{1,2} = \frac{1}{2a}*(b-\sqrt{b^2-4*a*c})$$

$$1x^2 -10x+25=0 \\
\underbrace{1}_{a=1}x^2 \underbrace{-10}_{ b=-10}x+\underbrace{25}_{c=25}=0 \\\\
x_{1,2} = \frac{1}{2*1}*(10-\sqrt{100-4*1*25})\\\\
x_{1,2} = \frac{1}{2}*(10-\sqrt{100-100})\\\\
x = \frac{1}{2}*(10-0)\\\\
x = \frac{1}{2}*10\\\\
x = \frac{10}{2}\\\\
x = 5$$

 Nov 19, 2014
 #1
avatar+26393 
+11
Best Answer

(2x-10)(x+5)=x^2+10x-75

 

okay:  x^2-10x=-25

now: $$x^2-10x+25=0$$

use the abc - formula:

if $$ax^2+bx+c = 0$$ than $$x_{1,2} = \frac{1}{2a}*(b-\sqrt{b^2-4*a*c})$$

$$1x^2 -10x+25=0 \\
\underbrace{1}_{a=1}x^2 \underbrace{-10}_{ b=-10}x+\underbrace{25}_{c=25}=0 \\\\
x_{1,2} = \frac{1}{2*1}*(10-\sqrt{100-4*1*25})\\\\
x_{1,2} = \frac{1}{2}*(10-\sqrt{100-100})\\\\
x = \frac{1}{2}*(10-0)\\\\
x = \frac{1}{2}*10\\\\
x = \frac{10}{2}\\\\
x = 5$$

heureka Nov 19, 2014
 #2
avatar+5 
+3

Great job Heureka!  You're smart!

 Nov 19, 2014
 #3
avatar
+8

and can i solve it this way?

x^2-10x+25

(x-5)^2=0

√(x-5)^2=√0

x-5=0

x=5

 Nov 19, 2014

0 Online Users