+0

Can someone help??!!

0
179
2

I keep getting this wrong!

Guest Jul 8, 2017

#1
+6615
+2

$$\frac{m-4}{m^2+8m+16}-\frac{m-4}{m+4}$$

We need to get a common denominator. To do that...multiply the second fraction by $$\frac{m+4}{m+4}$$  .

$$=\frac{m-4}{m^2+8m+16}-\frac{(m-4)(m+4)}{(m+4)(m+4)}$$

Multiply the numerator and denominator out.

$$=\frac{m-4}{m^2+8m+16}-\frac{m^2-16}{m^2+8m+16}$$

Now that we have a common denominator, we can combine the fractions.

$$=\frac{m-4-(m^2-16)}{m^2+8m+16} \\~\\ =\frac{m-4-m^2+16}{m^2+8m+16} \\~\\ =\frac{\mathbf{-1}m^2+m+\mathbf{12}}{m^2+\mathbf{8}m+\mathbf{16}}$$

hectictar  Jul 8, 2017
Sort:

#1
+6615
+2

$$\frac{m-4}{m^2+8m+16}-\frac{m-4}{m+4}$$

We need to get a common denominator. To do that...multiply the second fraction by $$\frac{m+4}{m+4}$$  .

$$=\frac{m-4}{m^2+8m+16}-\frac{(m-4)(m+4)}{(m+4)(m+4)}$$

Multiply the numerator and denominator out.

$$=\frac{m-4}{m^2+8m+16}-\frac{m^2-16}{m^2+8m+16}$$

Now that we have a common denominator, we can combine the fractions.

$$=\frac{m-4-(m^2-16)}{m^2+8m+16} \\~\\ =\frac{m-4-m^2+16}{m^2+8m+16} \\~\\ =\frac{\mathbf{-1}m^2+m+\mathbf{12}}{m^2+\mathbf{8}m+\mathbf{16}}$$

hectictar  Jul 8, 2017
#2
+1

Thank you

Guest Jul 8, 2017

19 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details