+0  
 
0
171
2
avatar

The values of x such that \(2x^2 - 6x + 5 = 0\)

are \( m+ni\) and \(m-ni,\) where \(m\) and \(n\) are positive. What is \(m\cdot n?\)

Guest Dec 27, 2017
 #1
avatar+92624 
+3

 

 

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\\ x = {-b \over2a} \pm {\sqrt{b^2-4ac} \over 2a}\\~\\ m=\frac{-b}{2a}=\frac{--6}{2*2}=\frac{3}{2}\\ ni={\sqrt{b^2-4ac} \over 2a}={\sqrt{(-6)^2-4*2*5} \over 2*2}={\sqrt{36-40} \over 4}={2i \over 4}={1\over 2}i\\\ mn=\frac{3}{2}\times {1\over 2}=\frac{3}{4}\)

Melody  Dec 27, 2017
 #2
avatar+86888 
+1

In the form  ax^2  +  bx  + c  =  0

 

The sum  of  the  roots will be  = -b/a

And the product of the roots will be  = c/a

 

Sum  of the roots   =   2m

Product of the roots  =  m^2  + n^2

 

So

 

2m  =  6/2   ⇒   m  =  3/2

And

m^2  + n^2  =  5/2    ⇒   (9/4) + n^2  =  5/2  ⇒  n^2  = 10/4 - 9/4  =  1/4  ⇒  n  =  1/2

 

So

 

m * n   =   (3/2)(1/2)  =  3/4

 

 

cool cool cool

CPhill  Dec 28, 2017

12 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.