We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
82
2
avatar+11 

Let $\frac mn$ be a fraction, where $m$ and $n$ are positive integers. Consider the operation defined by replacing $\frac mn$ by $\frac{m+1}{n+1}$ and then writing the result in lowest terms. For example, applying this operation to $\frac{5}{14}$ would give $\frac{2}{5}.$ How many times must this operation be repeatedly applied to $\frac{1}{2005}$ before we obtain $\frac{2004}{2005}?$

 

 

How many ordered pairs of positive integers $(m,n)$ satisfy $\text{GCD}(m,n) = 3$ and $\text{LCM}(m,n) = 108?$

 Oct 12, 2019
 #1
avatar
0

p=0;print 1/1005;print 1/1003;print 1/502;print 2/503;a=1;b=168;cycle1:c=a/b;printc;p=p+1;a++;b++;if(a<167, goto cycle1, 0);a=1;b=2;cycle:c=a/b;printc;p=p+1;a++;b++;if(a<2005, goto cycle,0);printp+4

 

1 / 1005
1 / 1003
1 / 502
2 / 503
1 / 168
2 / 169
3 / 170
This continues until you get: 166 / 333 + 1
165 / 332
166 / 333
1 / 2
2 / 3
3 / 4 - This continues until you get: 2004 / 2005
2001 / 2002
2002 / 2003
2003 / 2004
2004 / 2005
TOTAL TERMS = 2,174

 Oct 12, 2019
 #2
avatar
+1

How many ordered pairs of positive integers $(m,n)$ satisfy $\text{GCD}(m,n) = 3$ and $\text{LCM}(m,n) = 108?$

 

lcm      gcd       m           n

108        3        108        3

108        3         3        108

108        3         27        12

108        3         12        27

 


 

 Oct 12, 2019

17 Online Users

avatar