Solve for A:
P = (1073741824 i A)/1073741825
(1073741824 i A)/1073741825 = (1073741824 i A)/1073741825:
P = ((1073741824 i) A)/1073741825
P = ((1073741824 i) A)/1073741825 is equivalent to ((1073741824 i) A)/1073741825 = P:
((1073741824 i) A)/1073741825 = P
Divide both sides by (1073741824 i)/1073741825:
Answer: | A = -((1073741825 i) P)/1073741824
P=(i*A)/[1-(1+i)^-60] multiply both sides by [1-(1+i)^-60]
P * [1-(1+i)^-60] = i * A divide both sides by i
P * [1-(1+i)^-60] / i = A
This is a FINANCIAL formula for finding the regular PMT of a loan, mortgage, annuity........etc.
P=(R*A) / [1-(1+R)^-60] {Changed your i to R, because somebody has confused it with complex i}
Solve for A:
P = (A R)/(1-1/(R+1)^60)
P = (A R)/(1-1/(R+1)^60) is equivalent to (A R)/(1-1/(R+1)^60) = P:
(A R)/(1-1/(R+1)^60) = P
Divide both sides by R/(1-1/(R+1)^60):
Answer: | A = (P (1-1/(R+1)^60))/R