Let f(x)=(x2+6x+9)50−4x+3, and let r1,r2,…,r100 be the roots of f(x).
Compute (r1+3)100+(r2+3)100+⋯+(r100+3)100.
f(x)=((x+3)2)50−4x+3=(x+3)100−4x+3
(ri+3)100−4ri+3=0(i=1,2,...,100)
(ri+3)100=4ri−3
Therefore, (r1+3)100+(r2+3)100+...+(r100+3)100=(4r1−3)+(4r2−3)+...+(4r100−3)
=4(r1+r2+...+r100)−300
=4∗(−300)−300=−1500
(By Vieta's formulas, −(r1+r2+...+r100) equals the coefficient of x99 of f(x), which is nCr(100,1)∗31=300 by the binomial theorem.
Therefore, r1+r2+...+r100=−300.)