Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
793
1
avatar

Let f(x)=(x2+6x+9)504x+3, and let r1,r2,,r100 be the roots of f(x).

Compute (r1+3)100+(r2+3)100++(r100+3)100.

 Mar 1, 2019
 #1
avatar+9 
+1

f(x)=((x+3)2)504x+3=(x+3)1004x+3

 

(ri+3)1004ri+3=0(i=1,2,...,100)

 

(ri+3)100=4ri3

 

Therefore, (r1+3)100+(r2+3)100+...+(r100+3)100=(4r13)+(4r23)+...+(4r1003)

=4(r1+r2+...+r100)300

=4(300)300=1500

(By Vieta's formulas, (r1+r2+...+r100) equals the coefficient of x99 of f(x), which is nCr(100,1)31=300 by the binomial theorem.

Therefore, r1+r2+...+r100=300.)

 Mar 1, 2019

2 Online Users