+0  
 
0
36
1
avatar

Segment $AB$ measures 4 cm and is a diameter of circle $P$. In triangle $ABC$, point $C$ is on circle $P$ and $BC = 2$ cm. What is the area of the shaded region?

 

Guest Jun 27, 2018
 #1
avatar+87293 
+1

Since the base of triangle  ACB  is a diameter, then  ACB  is a right angle

And we can use the Pythagorean Theorem to find  AC

 

AC =  √[AB^2  - BC^2]  =  √[4^2  - 2^2 ] =  √12  units^2 =  2√3  cm

 

And the area  of triangle ABC  =  1/2 the product of the leg lengths  =

1/2 * AC * BC  =  1/2 (2√3) ( 2)  =   2√3 cm^2   (1) 

 

And the area  of the circle  = pi  * (diameter /2)^2 = pi * (4/2)^2  = pi * 2^2  = 4 pi cm^2  (2)

 

So....the shaded area  =

 

area of the circle - area of triangle ABC  =

 

(2)  - (1)  =

 

[ 4pi - 2√3 ) cm^2   ≈     9.10  cm^2

 

 

cool cool cool

CPhill  Jun 27, 2018

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.