+0  
 
+1
539
2
avatar+161 

Two distinct points $A$ and $B$ are on a circle with center at $O$, and point $P$ is outside the circle such that $\overline{PA}$ and $\overline{PB}$ are tangent to the circle. Find $AB$ if $PA = 12$ and the radius of the circle is 9.

AdminMod2  Sep 2, 2017

Best Answer 

 #2
avatar+19479 
+1

x=AB / 2

 

tan(APB/2) = 9 / 12 = x / y

y = (12/9) * x

 

x^2 +y^2 = 12^2

x^2 + [ (12/9) * x ]^2 =12^2

x = 36/5

 

AB = 2x

AB = 72/5 = 14.4

 

 

laugh

heureka  Sep 2, 2017
 #1
avatar+7318 
0

Two distinct points $A$ and $B$ are on a circle with center at $O$, and point $P$ is outside the circle such that $\overline{PA}$ and $\overline{PB}$ are tangent to the circle. Find $AB$ if $PA = 12$ and the radius of the circle is 9.

 

Right triangle OPA

\(opposite\ side=9\\ adjacent\ side=12\\ tan\ \alpha=\frac{9}{12}\\ \color{blue}\alpha=atan\frac{9}{12}\)

 

Right triangle PAC

\(hypotenuse=12\\ opposite\ side=\frac{\overline{AB}}{2}\\ \alpha=atan\frac{9}{12}=atan\ 0.75\\ sin\alpha =\frac{\overline{AB}}{2}/12\\\color{blue} \overline{AB}=2\times 12\times sin \alpha=2\times 12\times sin(atan\ 0.75)\)

 

\(\overline {AB}=14.4\)

 

laugh  !

asinus  Sep 2, 2017
edited by asinus  Sep 2, 2017
edited by asinus  Sep 2, 2017
 #2
avatar+19479 
+1
Best Answer

x=AB / 2

 

tan(APB/2) = 9 / 12 = x / y

y = (12/9) * x

 

x^2 +y^2 = 12^2

x^2 + [ (12/9) * x ]^2 =12^2

x = 36/5

 

AB = 2x

AB = 72/5 = 14.4

 

 

laugh

heureka  Sep 2, 2017

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.