+0  
 
0
355
4
avatar

The figure, not drawn to scale, is made up of 3 circles. The ratio of the area of the smallest circle to the largest circle is 2:5 while the shaded area is 3/7 of the unshaded area. What is the ratio of the shaded area to the area of the smallest circle?

 Mar 3, 2022
 #1
avatar+118687 
+1

 

A,B and C represent the areas

 

\(\frac{C}{A+B+C}=\frac{2}{5}\qquad (1)\\~\\ B=\frac{3}{7}(A+B)\\ \frac{7B-3C}{3}=A \qquad (2)\\ sub \;\;2\;\; into \;\;1 \\ \frac{C}{\frac{7B-3C}{3}+B+C}=\frac{2}{5}\\ \frac{3C}{7B-3C+3B+3C}=\frac{2}{5}\\ \frac{3C}{10B}=\frac{2}{5}\\ \frac{C}{B}=\frac{20}{15}\\ \frac{C}{B}=\frac{4}{3}\\ \frac{B}{C}=\frac{3}{4}\\\)

 

 

LaTex:

\frac{C}{A+B+C}=\frac{2}{5}\qquad (1)\\~\\
B=\frac{3}{7}(A+B)\\
\frac{7B-3C}{3}=A  \qquad (2)\\
sub \;\;2\;\; into \;\;1 \\
\frac{C}{\frac{7B-3C}{3}+B+C}=\frac{2}{5}\\
\frac{3C}{7B-3C+3B+3C}=\frac{2}{5}\\
\frac{3C}{10B}=\frac{2}{5}\\
\frac{C}{B}=\frac{20}{15}\\
\frac{C}{B}=\frac{4}{3}\\
\frac{B}{C}=\frac{3}{4}\\

 Mar 3, 2022
 #2
avatar+129899 
+1

Let C  = area of smallest circle

Let B = area of next largest circle

Let A = area of largest circle

Shaded area =  B - C

Unshaded area = C + ( A - B)

 

C /  A =  2 / 5    ⇒    A  =  (5/2)C

 

Shaded Area / Unshaded Area =   

 

(B - C)  / [ C + A - B ]  =  3/ 7

 

( B - C )  / [ C + (5/2)C -  B ]  =    3/7

 

(B - C) / [ (7/2)C - B ]   = 3/7

 

3 [(7/2)C - B ]  = 7 (B - C)

 

(21/2)C - 3B  =  7B - 7C

 

(21/2)C + 7C  =  7B + 3B

 

(35/2)C = 10B

 

(35/20) C  = B

 

(7/4)C = B

 

C = (4/7)B

 

Unshaded Area / Smallest circle

 

(B - C)  / C  =  [ (B - 4/7)B ]  / [ (4/7)B ]   =  (3/7B) / [ 4/7) B =   3 / 4  [ As Melody found !!!  ]

 

 

 

 

cool cool cool

 Mar 3, 2022

0 Online Users