We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Circles

+1
368
1

What is the area of the region defined by the equation \$x^2+y^2 - 7 = 4y-14x+3\$?

Oct 8, 2017

### 1+0 Answers

#1
+2

Let's get this equation of a circle into the form  (x - h)2 + (y - k)2  =  r2   , where  (h, k)  is the center of the circle, and  r  is its radius.

x2 + y2 - 7  =  4y - 14x + 3

Add  7  to both sides.

x2  +  y2  =  4y - 14x + 10

Add  14x  to both sides, and subtract  4y  from both sides.

x2 + 14x   +  y2 - 4y    =  10

Add  49   and add  4  to both sides to complete the squares.

x2 + 14x + 49  +  y2 - 4y + 4   =   10 + 49 + 4

Factor  x2 + 14x + 49  as a perfect square trinomial.

(x + 7)2   +   y2 - 4y + 4  =  63

Factor  y2 - 4y + 4  as a perfect square trinomial.

(x + 7)2   +   (y - 2)2  =  63

Now that the equation is in this form, we know that..

r2  =  63

And...

area of circle    =    pi * r2    =    pi * 63    =    63pi

Oct 8, 2017