+0  
 
0
22
1
avatar+760 

Chords UV, WX, and YZ of a circle are parallel. The distance between chords UV and WX is 1, and the distance between chords WX and YZ is also 1. If UV =6 and YZ = 4, then find WX.

 

 Feb 6, 2024
 #1
avatar+129895 
+1

Let d  be the distance from the center of the  circle to UV

Let the radius of the circle be r

So....by the Pythagorean Theorem

d^2  +  (UV /2)^2  =  r^2

d^2 + (3)^2  =r^2

d^2 + 9  = r^2     (1)

 

Let the distance between the center of the circle and YZ = d + 2

By the Pytagorean Theorem

(d +2)^2 + (YZ/2)^2  = r^2

(d + 2)^2 + (4/2)^2  = r^2

(d + 2)^2  + 2^2 = r^2

(d + 2)^2  + 4  = r^2     (2)

 

Equating (1) and (2)

 

d^2 + 9 = (d + 2)^2  + 4

d^2 + 9  =d^2 + 4d + 4 +4

1 = 4d

d = (1/4)

 

And

d^2 + 9  =r^2

(1/4) + 9 = r^2

(37/9) = r^2

 

 

To find (1/2) the length of WX

 

(d + 1)^2  + (WX/2)^2  = r^2

 

(1/4+ 1)^2  + (WX/2)^2  = 37/9

 

25/16  + (WX/2)^2  = 37/9

 

WX^2 / 4   =  37/9  - 25/16

 

WX^2 / 4  = 367/144

 

WX^2 =  367/36

 

WX = sqrt (367) / 6 ≈  3.19

 

 

cool cool cool

 Feb 6, 2024

1 Online Users

avatar