+0  
 
+5
323
1
avatar
(1/5+SQUARE ROOT 19/10i)^2
Guest Feb 4, 2012
 #1
avatar+6979 
0

\((\frac{1}{5}+\sqrt{\frac{19}{10i}})^2\\ = \frac{1}{25}+2\times \frac{1}{5}\times \sqrt{\frac{19}{10i}}+\frac{19}{10i}\\= \frac{1}{25}+\frac{2}{5}\times\frac{\sqrt{19}}{\sqrt{10}}\times \frac{\sqrt{2}}{1+i}+\frac{19}{10i}\)

Because sqrt i = (1+i)/ sqrt2

http://web2.0calc.com/questions/what-is-square-root-of-i

\(=\frac{1}{25}+\frac{2\sqrt{38}}{(5\sqrt{10})(1+i)}+\frac{19}{10i}\)

\(=\frac{1}{25}+\frac{2\sqrt{-380}}{50i(1+i)}+\frac{95+95i}{50i(1+i)}\)

\(=\frac{1}{25}+\frac{(2\sqrt{380}+95)i+95}{50i-50}\)

You can do the last half yourself.

MaxWong  Jul 19, 2016

12 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.