+0  
 
+5
194
1
avatar
(1/5+SQUARE ROOT 19/10i)^2
Guest Feb 4, 2012
Sort: 

1+0 Answers

 #1
avatar+6880 
0

\((\frac{1}{5}+\sqrt{\frac{19}{10i}})^2\\ = \frac{1}{25}+2\times \frac{1}{5}\times \sqrt{\frac{19}{10i}}+\frac{19}{10i}\\= \frac{1}{25}+\frac{2}{5}\times\frac{\sqrt{19}}{\sqrt{10}}\times \frac{\sqrt{2}}{1+i}+\frac{19}{10i}\)

Because sqrt i = (1+i)/ sqrt2

http://web2.0calc.com/questions/what-is-square-root-of-i

\(=\frac{1}{25}+\frac{2\sqrt{38}}{(5\sqrt{10})(1+i)}+\frac{19}{10i}\)

\(=\frac{1}{25}+\frac{2\sqrt{-380}}{50i(1+i)}+\frac{95+95i}{50i(1+i)}\)

\(=\frac{1}{25}+\frac{(2\sqrt{380}+95)i+95}{50i-50}\)

You can do the last half yourself.

MaxWong  Jul 19, 2016

25 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details