+0  
 
0
395
2
avatar+216 

Illustrate applications of the logarithm.

Stars have an apparent magnitude m, which is the brightness of light reaching Earth. They also have an absolute magnitude M, which is the intrinsic brightness and does not depend on the distance from Earth. The difference S = m − M is the spectroscopic parallax. Spectroscopic parallax is related to the distance D from Earth, in parsecs, by

 

                S = 5 log D − 5.

 

(a) Use the laws of logarithms to determine what happens to S if D is doubled. (Round your answer to two decimal places.)

 

If D is doubled S increases by ______ (I got 1.51)

 

(b) Solve the equation above for D to express distance as a function of spectroscopic parallax.

 

D= ______

idenny  Apr 12, 2017
 #1
avatar+90001 
+2

S  = 5 log D − 5

 

a. If D is doubled

 

S  = 5 log (2D)  - 5  =

 

5 [ log 2 + log D]  - 5  =

 

5 log2 +[ 5logD  -  5 ]  =

 

5log2  + S

 

5log2  ≈  1.51

 

So "S"   increases by  ≈ 1.51

 

 

b. S  = 5 log D − 5     add 5 to both sides

 

S + 5   =  5logD         divide both sides by 5

 

[S + 5]  / 5   =  log D       exponentially, we have that

 

D  =  10 ( [S + 5]  / 5 )   =  10 s/5 + 1   

 

 

cool cool cool

CPhill  Apr 12, 2017
 #2
avatar+216 
0

<3333333

idenny  Apr 12, 2017

22 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.