+0  
 
0
876
5
avatar+956 

 

My answer: {x e R | x ≤ -11} Is that correct? 

 Jan 14, 2018
 #1
avatar+37146 
0

The first one has a domain of

-14   -13   -12   -11   -10  -9 ......etc

The SECOND one has a domain of

-11  -12  -13  -14  -15  -16.....

 

The common numbers (in color) define the new domain after adding the functions....the minimum is   -14   that will satisfy both of the domain restrictions given....

 Jan 14, 2018
edited by ElectricPavlov  Jan 14, 2018
edited by ElectricPavlov  Jan 14, 2018
 #2
avatar+956 
0

So x ≤ -14 and x e R ? 

Julius  Jan 14, 2018
 #3
avatar+37146 
0

The question asks what is the minumum value in the domain of  (g+f)(x) :      -14

 

The domain   is   -14  -13   -12  -11         Cool?  

ElectricPavlov  Jan 14, 2018
 #4
avatar+9479 
+2

Whatever  x  value we choose to plug in to  (g + f)(x)  has to be in the domain of both  g(x)  and  f(x) .

 

For instance, we can't find  g(1) + f(1)  because we can't find  g(1) .

 

The domain of  g + f  is all real  x  values such that   x ≥ -14  and  x ≤ -11

 

The domain of  g + f  is all real  x  values such that   -14 ≤ x ≤ -11

 

The minimum value in that domain is  -14  .

 Jan 15, 2018
 #5
avatar+956 
+1

Ohh I see, they're asking for a value. 

Thanks everyone! 

 Jan 15, 2018

2 Online Users

avatar