+0  
 
0
149
1
avatar+272 

Complete the coordinate proof of the theorem.

Given:  ABCD is a square.

Prove: The diagonals of ​ ABCD ​ are perpendicular.

 

 

Enter your answers in the boxes.

 

The coordinates of  square ABCD are A(0, 0) , B(________, 0), C(_____, a), and ​ D(0,  a) .

 

The slope of AC¯¯¯¯¯ , when simplified, is equal to_________ .

 

The slope of BD¯¯¯¯¯, when simplified, is equal to −1 .

 

The product of the slopes is equal to ____________.

 

Therefore, the diagonals of ​ ABCD ​ are perpendicular.

sii1lver  Jan 7, 2018

Best Answer 

 #1
avatar+7056 
+1

The coordinates of square ABCD are  A(0, 0) ,  B(a, 0) ,  C(a a) , and ​ D(0,  a) .

 

The slope of  AC   =   [a - 0] / [a - 0]   =   1 .

 

The slope of  BD   =   -1 .

 

The product of the slopes   =   1 * -1   =   -1 .

hectictar  Jan 7, 2018
Sort: 

1+0 Answers

 #1
avatar+7056 
+1
Best Answer

The coordinates of square ABCD are  A(0, 0) ,  B(a, 0) ,  C(a a) , and ​ D(0,  a) .

 

The slope of  AC   =   [a - 0] / [a - 0]   =   1 .

 

The slope of  BD   =   -1 .

 

The product of the slopes   =   1 * -1   =   -1 .

hectictar  Jan 7, 2018

10 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy