We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
715
5
avatar+466 

How do I complete the square and find out the third number in these trinomials?

9x2 - 6x ??
9y2 + 12y ??

angry

 Dec 28, 2015

Best Answer 

 #1
avatar+104855 
+15

9x^2 - 6x     first, factor out the 9

 

9 [x^2 - (2/3)x ]       Now, inside the brackets, take 1/2 of the coefficient on x = (1/2)(2/3) = 1/3   ....square it .... (1/3)^2  = 1/9.......add this and subtract it.....so we have

 

9 [ x^2 -(2/3)x + 1/9  - 1/9]        factor the 1st three terms

 

9 [ ( x - 1/3)^2  - 1/9 ]               distribute the 9 back across everything

 

9(x - 1/3)^2 -  1

 

 

The second one is similar

 

9y^2 + 12y

 

9 [ y ^2 + (4/3)y]       ........         (1/2)(4/3)  = 2/3      ......(2/3)^2  = 4/9

 

9[ y^2 + (4/3)y + 4/9   - 4/9]  =

 

9 [ (y + 2/3)^2 - 4/9]  =

 

9(y + 2/3)^2 - 4

 

 

 

cool cool cool

 Dec 28, 2015
 #1
avatar+104855 
+15
Best Answer

9x^2 - 6x     first, factor out the 9

 

9 [x^2 - (2/3)x ]       Now, inside the brackets, take 1/2 of the coefficient on x = (1/2)(2/3) = 1/3   ....square it .... (1/3)^2  = 1/9.......add this and subtract it.....so we have

 

9 [ x^2 -(2/3)x + 1/9  - 1/9]        factor the 1st three terms

 

9 [ ( x - 1/3)^2  - 1/9 ]               distribute the 9 back across everything

 

9(x - 1/3)^2 -  1

 

 

The second one is similar

 

9y^2 + 12y

 

9 [ y ^2 + (4/3)y]       ........         (1/2)(4/3)  = 2/3      ......(2/3)^2  = 4/9

 

9[ y^2 + (4/3)y + 4/9   - 4/9]  =

 

9 [ (y + 2/3)^2 - 4/9]  =

 

9(y + 2/3)^2 - 4

 

 

 

cool cool cool

CPhill Dec 28, 2015
 #2
avatar+466 
+5

Thank you! cool

 Dec 28, 2015
 #3
avatar+104855 
+5

No prob, Shades.......!!!!

 

 

cool cool cool

 Dec 28, 2015
 #4
avatar+105634 
0

Great answer Chris :)

 Dec 28, 2015
 #5
avatar+104855 
0

Thanks, Melody.......

 

 

 

cool cool cool

 Dec 28, 2015

31 Online Users

avatar
avatar