Hi, could someone please help me out on this? Thanks!
Simplify (1+i√3)6.
(1+i√3)6=(60)(i√3)0+(61)(i√3)1+(62)(i√3)2+(63)(i√3)3+(64)(i√3)4+(65)(i√3)5+(66)(i√3)6=1+6∗(i√3)1+15(i√3)2+20(i√3)3+15(i√3)4+6(i√3)5+(i√3)6=1+(6√3)i−15(√3)2−20(√3)3i+15(√3)4+6(√3)5i−(√3)6=1+(6√3)i−15∗3−60(√3)i+15∗9+6∗9√3i−27=1+6√3i−45−60√3i+135+54√3i−27=1−45+135−27+(6√3−60√3+54√3)i=1−45+135−27+(6√3−60√3+54√3)i=64
You need to check my working. there may also have been a simpler path.
LaTex
(1 + i\sqrt{3})^6\\
=\binom{6}{0}(i\sqrt3)^0+\binom{6}{1}(i\sqrt3)^1+\binom{6}{2}(i\sqrt3)^2
+\binom{6}{3}(i\sqrt3)^3+\binom{6}{4}(i\sqrt3)^4+\binom{6}{5}(i\sqrt3)^5+\binom{6}{6}(i\sqrt3)^6\\
=1+6*(i\sqrt3)^1+15(i\sqrt3)^2+20(i\sqrt3)^3+15(i\sqrt3)^4+6(i\sqrt3)^5+(i\sqrt3)^6\\
=1+(6\sqrt3)i-15(\sqrt3)^2-20(\sqrt3)^3i+15(\sqrt3)^4+6(\sqrt3)^5i-(\sqrt3)^6\\
=1+(6\sqrt3)i-15*3-60(\sqrt3)i+15*9+6*9\sqrt3 i-27\\
=1+6\sqrt3i-45-60\sqrt3i+135+54\sqrt3 i-27\\
=1-45+135-27+(6\sqrt3-60\sqrt3+54\sqrt3) i\\
=1-45+135-27+(6\sqrt3-60\sqrt3+54\sqrt3) i\\
=64