Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+27
379
4
avatar+1306 

Hi, could someone please help me out on this? Thanks!

Simplify (1+i3)6.

 Feb 1, 2022
 #1
avatar+118696 
+2

 

(1+i3)6=(60)(i3)0+(61)(i3)1+(62)(i3)2+(63)(i3)3+(64)(i3)4+(65)(i3)5+(66)(i3)6=1+6(i3)1+15(i3)2+20(i3)3+15(i3)4+6(i3)5+(i3)6=1+(63)i15(3)220(3)3i+15(3)4+6(3)5i(3)6=1+(63)i15360(3)i+159+693i27=1+63i45603i+135+543i27=145+13527+(63603+543)i=145+13527+(63603+543)i=64

 

You need to check my working.   there may also have been a simpler path.

 

 

LaTex

(1 + i\sqrt{3})^6\\
=\binom{6}{0}(i\sqrt3)^0+\binom{6}{1}(i\sqrt3)^1+\binom{6}{2}(i\sqrt3)^2
+\binom{6}{3}(i\sqrt3)^3+\binom{6}{4}(i\sqrt3)^4+\binom{6}{5}(i\sqrt3)^5+\binom{6}{6}(i\sqrt3)^6\\
=1+6*(i\sqrt3)^1+15(i\sqrt3)^2+20(i\sqrt3)^3+15(i\sqrt3)^4+6(i\sqrt3)^5+(i\sqrt3)^6\\
=1+(6\sqrt3)i-15(\sqrt3)^2-20(\sqrt3)^3i+15(\sqrt3)^4+6(\sqrt3)^5i-(\sqrt3)^6\\
=1+(6\sqrt3)i-15*3-60(\sqrt3)i+15*9+6*9\sqrt3 i-27\\
=1+6\sqrt3i-45-60\sqrt3i+135+54\sqrt3 i-27\\
=1-45+135-27+(6\sqrt3-60\sqrt3+54\sqrt3) i\\
=1-45+135-27+(6\sqrt3-60\sqrt3+54\sqrt3) i\\
=64

 Feb 1, 2022
 #4
avatar+1306 
0

Ohh got it. Thank you Melody!

dolphinia  Feb 10, 2022
 #2
avatar
+1

Put the number into polar form, 

r(cosθ+isinθ).

r2=12+(3)2=4, r=2.

tanθ=3/1, θ=π/3.

(1+i3)6=[2(cos(π/3)+isin(π/3))]6=26(cos(2π)+isin(2π))=64.

 Feb 1, 2022
 #3
avatar+118696 
0

That is much nicer, thanks for reminding me :))

Melody  Feb 1, 2022

1 Online Users