When
x=3+5i2,
find the value of 2x3+2x2−7x+72.
x2=(3+5i2)2x2=(3+5i)24x2=9+30i−254x2=−16+30i4x2=−8+15i2x3=(−8+15i)2∗(3+5i)2x3=(−8+15i)(3+5i)4x3=−24−40i+45i−754x3=−99+5i4x3=−99+5i4
2x3+2x2−7x+72=2∗(−99+5i)4+2∗(−8+15i)2−7∗(3+5i)2+72=−99+5i2+(−8+15i)−7(3+5i)2+72=−99+5i2−8+15i−21+35i2+72=−99+5i2−21+35i2+64+15i=−99+5i−(21+35i)2+64+15i=−99+5i−21−35i2+64+15i=−120−30i2+64+15i=−60−15i+64+15i=4