Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
694
1
avatar+88 

There are two complex numbers, namely z and w. They satisfy |z| = |w| = 1 and zw =/= -1.

(a) Prove that ¯z=1z and ¯w=1w

(b) Prove that z+wzw+1 is a real number.

 

The lines indicate the magnitude (ex. |z|).

I began by expressing z and w as complex numbers- a + bi and c+di. The magnitude of z would then be |z|=a2+b2=1 and the magnitude of w would then be |w|=c2+d2=1. Based on that, a^2+b^2 and c^2+d^2 would both be equal to 1, but it's not really getting me anywhere. Could someone help me out?

 Jan 18, 2021
 #1
avatar+9675 
+2

(a) Because zˉz=|z|2zˉz=12. This means ¯z=1z.

Similarly, with the exact same steps, ¯w=1w.

 

(b) We write z and w in polar form. Let z=cosθ+isinθ and w=cosϕ+isinϕ.

 

z+wzw+1=(cosθ+cosϕ)+i(sinθ+sinϕ)(cosθ+isinθ)(cosϕ+isinϕ)+1=(cosθ+cosϕ)+i(sinθ+sinϕ)(cosθcosϕsinθsinϕ+1)+i(sinθcosϕ+cosθsinϕ)

 

Simplifying, z+wzw+1=((cosθ+cosϕ)+i(sinθ+sinϕ))(cos(θ+ϕ)+1isin(θ+ϕ))(cos(θ+ϕ)+1)2+sin2(θ+ϕ)

 

This means Im(z+wzw+1)=(cos(θ+ϕ)+1)(sinθ+sinϕ)(cosθ+cosϕ)sin(θ+ϕ)(cos(θ+ϕ)+1)2+sin2(θ+ϕ)

 

Notice that 

(cos(θ+ϕ)+1)(sinθ+sinϕ)=sinθ+sinϕ+sinθcosθcosϕsin2θsinϕ+sinϕcosθcosϕsinθsin2ϕ=sinθcos2ϕ+sinϕcos2θ+sinθcosθcosϕ+sinϕcosθcosϕ

 

Also, 

(cosθ+cosϕ)sin(θ+ϕ)=cosθsinθcosϕ+cosθsinϕcosθ+cosϕsinθcosϕ+cosϕsinϕcosθ=cosθsinθcosϕ+cos2θsinϕ+cos2ϕsinθ+cosϕsinϕcosθ

 

This means (cos(θ+ϕ)+1)(sinθ+sinϕ)=(cosθ+cosϕ)sin(θ+ϕ).

 

Then it immediately follows that Im(z+wzw+1)=0, which means z+wzw+1 is a real number.

 Jan 19, 2021

4 Online Users

avatar