We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
74
2
avatar+112 

Let \(\omega\) be a nonreal root of \(z^3=1.\) Let \(a_1, a_2,\dots,a_n\) be real numbers such that \(\frac{1}{a_1 + \omega} + \frac{1}{a_2 + \omega} + \dots + \frac{1}{a_n + \omega} = 2 + 5i.\)
Compute \(\frac{2a_1 - 1}{a_1^2 - a_1 + 1} + \frac{2a_2 - 1}{a_2^2 - a_2 + 1} + \dots + \frac{2a_n - 1}{a_n^2 - a_n + 1}. \)
 

Please I need help on this. It is very confusing.

 Oct 20, 2019
edited by AoPS.Morrisville  Oct 20, 2019
 #1
avatar+969 
+1

Are you the real AoPS?

 Oct 20, 2019
 #2
avatar
0

The answer is 15 - 3i.

 Oct 29, 2019

11 Online Users

avatar
avatar