well.. let's brute force it and see if we get any insightz2+z+1=0z=−1±i√32=e±i2π3so picking either root zn+1zn=ei2nπ3+e−i2nπ3=2cos(2nπ3)
looking at an=2cos(2nπ3) we find thatan={−1n(mod3)∈{1,2}2n(mod3)=0
and thus the original sum becomes15∑k=1 (1+1+4)=15⋅6=90
.