Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
965
3
avatar+818 

Let z be a complex number satisfying z2+z+1=0. Compute (z+1z)2+(z2+1z2)2+(z3+1z3)2++(z45+1z45)2.
 

 Dec 27, 2018
 #1
avatar+6251 
+3

well.. let's brute force it and see if we get any insightz2+z+1=0z=1±i32=e±i2π3so picking either root zn+1zn=ei2nπ3+ei2nπ3=2cos(2nπ3)

 

looking at an=2cos(2nπ3) we find thatan={1n(mod3){1,2}2n(mod3)=0

 

and thus the original sum becomes15k=1 (1+1+4)=156=90

.
 Dec 27, 2018
 #2
avatar+818 
+1

Thank you, Rom! laugh

mathtoo  Dec 28, 2018
 #3
avatar+118703 
0

Thanks Rom :)

Another interesting one for me to inspect :))

Melody  Dec 29, 2018

0 Online Users