+0  
 
+5
563
1
avatar

sin(x+15 degree) = 3 cos( x-15 degree)

Guest Nov 25, 2015

Best Answer 

 #1
avatar+20151 
+15

sin(x+15 degree) = 3 cos( x-15 degree)

 

\(\small{ \boxed{~ \text{Formula: }\quad \begin{array}{lcl} \sin{ (x+y) } &=& \sin{(x)}\cdot \cos{(y)} + \sin{(y)} \cdot \cos{(x)} \\ \cos{ (x-y) } &=& \cos{(x)}\cdot \cos{(y)} + \sin{(x)} \cdot \sin{(y)} \\ \end{array} ~}\\ \begin{array}{rcl} \sin{ ( x + 15^{\circ} ) } &=& 3 \cos{ ( x - 15^{\circ} ) } \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot [~ \cos{(x)}\cdot \cos{( 15^{\circ})} + \sin{(x)} \cdot \sin{( 15^{\circ})} ~] \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot \cos{(x)}\cdot \cos{( 15^{\circ})} + 3 \cdot \sin{(x)} \cdot \sin{( 15^{\circ})} \quad | \quad : \cos{(x)} \quad x\ne 90^{\circ}\\ \tan{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} + 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} \\ \tan{(x)}\cdot \cos{(15^{\circ})} - 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} - \sin{(15^{\circ})} \qquad | \qquad : \cos{(15^{\circ})} \\ \tan{(x)} - 3 \cdot \tan{(x)} \cdot \tan{( 15^{\circ})} &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)}\cdot \left[~ 1 - 3 \cdot \tan{( 15^{\circ})} ~ \right] &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)} &=& \frac{ 3 - \tan{(15^{\circ})} } { 1 - 3 \cdot \tan{( 15^{\circ})} } \\ \tan{(x)} &=& \frac{ 2.7320508076 } { 0.1961524227 } \\ \tan{(x)} &=& 13.9282032303 \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 85.8933946491^{\circ} \pm k\cdot 180^{\circ} \qquad k \in Z } \end{array} }\)

 

laugh

heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015
 #1
avatar+20151 
+15
Best Answer

sin(x+15 degree) = 3 cos( x-15 degree)

 

\(\small{ \boxed{~ \text{Formula: }\quad \begin{array}{lcl} \sin{ (x+y) } &=& \sin{(x)}\cdot \cos{(y)} + \sin{(y)} \cdot \cos{(x)} \\ \cos{ (x-y) } &=& \cos{(x)}\cdot \cos{(y)} + \sin{(x)} \cdot \sin{(y)} \\ \end{array} ~}\\ \begin{array}{rcl} \sin{ ( x + 15^{\circ} ) } &=& 3 \cos{ ( x - 15^{\circ} ) } \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot [~ \cos{(x)}\cdot \cos{( 15^{\circ})} + \sin{(x)} \cdot \sin{( 15^{\circ})} ~] \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot \cos{(x)}\cdot \cos{( 15^{\circ})} + 3 \cdot \sin{(x)} \cdot \sin{( 15^{\circ})} \quad | \quad : \cos{(x)} \quad x\ne 90^{\circ}\\ \tan{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} + 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} \\ \tan{(x)}\cdot \cos{(15^{\circ})} - 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} - \sin{(15^{\circ})} \qquad | \qquad : \cos{(15^{\circ})} \\ \tan{(x)} - 3 \cdot \tan{(x)} \cdot \tan{( 15^{\circ})} &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)}\cdot \left[~ 1 - 3 \cdot \tan{( 15^{\circ})} ~ \right] &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)} &=& \frac{ 3 - \tan{(15^{\circ})} } { 1 - 3 \cdot \tan{( 15^{\circ})} } \\ \tan{(x)} &=& \frac{ 2.7320508076 } { 0.1961524227 } \\ \tan{(x)} &=& 13.9282032303 \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 85.8933946491^{\circ} \pm k\cdot 180^{\circ} \qquad k \in Z } \end{array} }\)

 

laugh

heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015

19 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.