+0

# compound formula

+5
390
1

sin(x+15 degree) = 3 cos( x-15 degree)

Guest Nov 25, 2015

#1
+18948
+15

sin(x+15 degree) = 3 cos( x-15 degree)

$$\small{ \boxed{~ \text{Formula: }\quad \begin{array}{lcl} \sin{ (x+y) } &=& \sin{(x)}\cdot \cos{(y)} + \sin{(y)} \cdot \cos{(x)} \\ \cos{ (x-y) } &=& \cos{(x)}\cdot \cos{(y)} + \sin{(x)} \cdot \sin{(y)} \\ \end{array} ~}\\ \begin{array}{rcl} \sin{ ( x + 15^{\circ} ) } &=& 3 \cos{ ( x - 15^{\circ} ) } \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot [~ \cos{(x)}\cdot \cos{( 15^{\circ})} + \sin{(x)} \cdot \sin{( 15^{\circ})} ~] \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot \cos{(x)}\cdot \cos{( 15^{\circ})} + 3 \cdot \sin{(x)} \cdot \sin{( 15^{\circ})} \quad | \quad : \cos{(x)} \quad x\ne 90^{\circ}\\ \tan{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} + 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} \\ \tan{(x)}\cdot \cos{(15^{\circ})} - 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} - \sin{(15^{\circ})} \qquad | \qquad : \cos{(15^{\circ})} \\ \tan{(x)} - 3 \cdot \tan{(x)} \cdot \tan{( 15^{\circ})} &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)}\cdot \left[~ 1 - 3 \cdot \tan{( 15^{\circ})} ~ \right] &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)} &=& \frac{ 3 - \tan{(15^{\circ})} } { 1 - 3 \cdot \tan{( 15^{\circ})} } \\ \tan{(x)} &=& \frac{ 2.7320508076 } { 0.1961524227 } \\ \tan{(x)} &=& 13.9282032303 \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 85.8933946491^{\circ} \pm k\cdot 180^{\circ} \qquad k \in Z } \end{array} }$$

heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015
Sort:

#1
+18948
+15

sin(x+15 degree) = 3 cos( x-15 degree)

$$\small{ \boxed{~ \text{Formula: }\quad \begin{array}{lcl} \sin{ (x+y) } &=& \sin{(x)}\cdot \cos{(y)} + \sin{(y)} \cdot \cos{(x)} \\ \cos{ (x-y) } &=& \cos{(x)}\cdot \cos{(y)} + \sin{(x)} \cdot \sin{(y)} \\ \end{array} ~}\\ \begin{array}{rcl} \sin{ ( x + 15^{\circ} ) } &=& 3 \cos{ ( x - 15^{\circ} ) } \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot [~ \cos{(x)}\cdot \cos{( 15^{\circ})} + \sin{(x)} \cdot \sin{( 15^{\circ})} ~] \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot \cos{(x)}\cdot \cos{( 15^{\circ})} + 3 \cdot \sin{(x)} \cdot \sin{( 15^{\circ})} \quad | \quad : \cos{(x)} \quad x\ne 90^{\circ}\\ \tan{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} + 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} \\ \tan{(x)}\cdot \cos{(15^{\circ})} - 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} - \sin{(15^{\circ})} \qquad | \qquad : \cos{(15^{\circ})} \\ \tan{(x)} - 3 \cdot \tan{(x)} \cdot \tan{( 15^{\circ})} &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)}\cdot \left[~ 1 - 3 \cdot \tan{( 15^{\circ})} ~ \right] &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)} &=& \frac{ 3 - \tan{(15^{\circ})} } { 1 - 3 \cdot \tan{( 15^{\circ})} } \\ \tan{(x)} &=& \frac{ 2.7320508076 } { 0.1961524227 } \\ \tan{(x)} &=& 13.9282032303 \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 85.8933946491^{\circ} \pm k\cdot 180^{\circ} \qquad k \in Z } \end{array} }$$

heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015

### 20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details