We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+5
749
1
avatar

sin(x+15 degree) = 3 cos( x-15 degree)

 Nov 25, 2015

Best Answer 

 #1
avatar+23317 
+15

sin(x+15 degree) = 3 cos( x-15 degree)

 

\(\small{ \boxed{~ \text{Formula: }\quad \begin{array}{lcl} \sin{ (x+y) } &=& \sin{(x)}\cdot \cos{(y)} + \sin{(y)} \cdot \cos{(x)} \\ \cos{ (x-y) } &=& \cos{(x)}\cdot \cos{(y)} + \sin{(x)} \cdot \sin{(y)} \\ \end{array} ~}\\ \begin{array}{rcl} \sin{ ( x + 15^{\circ} ) } &=& 3 \cos{ ( x - 15^{\circ} ) } \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot [~ \cos{(x)}\cdot \cos{( 15^{\circ})} + \sin{(x)} \cdot \sin{( 15^{\circ})} ~] \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot \cos{(x)}\cdot \cos{( 15^{\circ})} + 3 \cdot \sin{(x)} \cdot \sin{( 15^{\circ})} \quad | \quad : \cos{(x)} \quad x\ne 90^{\circ}\\ \tan{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} + 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} \\ \tan{(x)}\cdot \cos{(15^{\circ})} - 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} - \sin{(15^{\circ})} \qquad | \qquad : \cos{(15^{\circ})} \\ \tan{(x)} - 3 \cdot \tan{(x)} \cdot \tan{( 15^{\circ})} &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)}\cdot \left[~ 1 - 3 \cdot \tan{( 15^{\circ})} ~ \right] &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)} &=& \frac{ 3 - \tan{(15^{\circ})} } { 1 - 3 \cdot \tan{( 15^{\circ})} } \\ \tan{(x)} &=& \frac{ 2.7320508076 } { 0.1961524227 } \\ \tan{(x)} &=& 13.9282032303 \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 85.8933946491^{\circ} \pm k\cdot 180^{\circ} \qquad k \in Z } \end{array} }\)

 

laugh

 Nov 25, 2015
edited by heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015
 #1
avatar+23317 
+15
Best Answer

sin(x+15 degree) = 3 cos( x-15 degree)

 

\(\small{ \boxed{~ \text{Formula: }\quad \begin{array}{lcl} \sin{ (x+y) } &=& \sin{(x)}\cdot \cos{(y)} + \sin{(y)} \cdot \cos{(x)} \\ \cos{ (x-y) } &=& \cos{(x)}\cdot \cos{(y)} + \sin{(x)} \cdot \sin{(y)} \\ \end{array} ~}\\ \begin{array}{rcl} \sin{ ( x + 15^{\circ} ) } &=& 3 \cos{ ( x - 15^{\circ} ) } \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot [~ \cos{(x)}\cdot \cos{( 15^{\circ})} + \sin{(x)} \cdot \sin{( 15^{\circ})} ~] \\ \sin{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} \cdot \cos{(x)} &=& 3 \cdot \cos{(x)}\cdot \cos{( 15^{\circ})} + 3 \cdot \sin{(x)} \cdot \sin{( 15^{\circ})} \quad | \quad : \cos{(x)} \quad x\ne 90^{\circ}\\ \tan{(x)}\cdot \cos{(15^{\circ})} + \sin{(15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} + 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} \\ \tan{(x)}\cdot \cos{(15^{\circ})} - 3 \cdot \tan{(x)} \cdot \sin{( 15^{\circ})} &=& 3 \cdot \cos{( 15^{\circ})} - \sin{(15^{\circ})} \qquad | \qquad : \cos{(15^{\circ})} \\ \tan{(x)} - 3 \cdot \tan{(x)} \cdot \tan{( 15^{\circ})} &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)}\cdot \left[~ 1 - 3 \cdot \tan{( 15^{\circ})} ~ \right] &=& 3 - \tan{(15^{\circ})} \\ \tan{(x)} &=& \frac{ 3 - \tan{(15^{\circ})} } { 1 - 3 \cdot \tan{( 15^{\circ})} } \\ \tan{(x)} &=& \frac{ 2.7320508076 } { 0.1961524227 } \\ \tan{(x)} &=& 13.9282032303 \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 85.8933946491^{\circ} \pm k\cdot 180^{\circ} \qquad k \in Z } \end{array} }\)

 

laugh

heureka Nov 25, 2015
edited by heureka  Nov 25, 2015
edited by heureka  Nov 25, 2015

17 Online Users

avatar
avatar
avatar