Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
3831
4
avatar+239 

Compute 112+214+318++n12n+.
 

 Apr 12, 2019
 #3
avatar
+3

sumfor(n, 1, 1000, n/(2^n) = 2

 Apr 12, 2019
 #4
avatar+26396 
+4

Compute 

112+214+318++n12n+

 

 

Let x=12|x|<1 

 

Now we have:  s=n=1nxn

 

Let the progression to be summed be put equal to s:

s=x+2x2+3x3+4x4++nxn+

 

It is divided by x and multiplied by dx then

s dxx=dx+2x dx+3x2 dx+4x3 dx++nxn1 dx+

 

and with the integrals taken this equation is found
s dxx=x+x2+x3+x4++xn+=x1x infinite geometric progression 

 

Therefore from the equation:
s dxx=x1x


on differentiation s is found. For the equation becomes:
sx=x1x(1x(1)1x)=11x+x(1)(1x)2(1)=11x+x(1x)2=1x+x(1x)2=1(1x)2

 

thus there is produced:
s=x(1x)2

So  let x=12:

 

s=12(112)2=12(12)2=112s=2


finally
112+214+318++n12n+=2

 

laugh

 Apr 12, 2019

1 Online Users