We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
1146
3
avatar+601 

 

Compute \(1+i+i^2+i^3+i^4+\cdots+i^{2009}\)

 Dec 12, 2017
 #1
avatar+104712 
+1

Note

 

i1 + 4n + i 2 + 4n + i3 + 4n  + i 4 + 4n  =   0     where n  is an integer  ≥ 0

 

So.....  we have

 

1  +  0  + i 2009 =

 

1 +  i 1 + 4(502)  = 

 

1 +  i * i2008 =

 

1 +  i *  ( i2 )1004

 

1 + i  (-1)1004      { (-1)2n   = 1 }

 

1  +  i

 

 

cool cool cool

 Dec 12, 2017
 #3
avatar+23281 
+2

Compute $1+i+i^2+i^3+i^4+\cdots+i^{2009}$.

 

Compute \(1+i+i^2+i^3+i^4+\cdots+i^{2009}.\)

 

geometric sequence: \(a = 1,~ r = i\)

The sum is \(\begin{array}{|rcll|} \hline s &=& 1\cdot \dfrac{i^{2010}-1}{i-1} \\ \hline \end{array}\)

 

\(\begin{array}{|rclcrcl|} \hline s &=& 1\cdot \left( \dfrac{i^{2010}-1}{i-1} \right) \\ && & i^{2010} &=& i^{2\cdot1005} \\ && & &=& (i^2)^{1005} \quad & | \quad i^2 = -1 \\ && & &=& (-1)^{1005} \\ && & &=& -1 \\ s &=& \left(\dfrac{-1-1}{i-1}\right)\cdot \left(\dfrac{i+1}{i+1}\right) \\\\ &=& \dfrac{(-1-1)(i+1)}{(i-1)(i+1)} \\\\ &=& \dfrac{(-1-1)(i+1)}{(i^2-1)} \quad & | \quad i^2 = -1 \\\\ &=& \dfrac{(-1-1)(i+1)}{(-1-1)} \\\\ &=& i+1 \\ \hline \end{array}\)

 

\( \mathbf{1+i+i^2+i^3+i^4+\cdots+i^{2009} = 1+i} \)

 

 

laugh

 Dec 12, 2017

19 Online Users

avatar