Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1052
6
avatar+647 

Compute 1+i+i^2+i^3+i^4+....i^2009

 Oct 28, 2017
 #1
avatar
0

Everything cancels out except 2009 positive "1s" PLUS the last term of: i^2009 =i. Therefore the answer is: =2,009 + i

 Oct 28, 2017
 #2
avatar+118696 
+2

Compute 1+i+i^2+i^3+i^4+....i^2009

 

This is the sume of a  GP

a=1, r=i, n=2010

 

sn=a(1rn)1rS2010=1(1i2010)1iS2010=1i20101i

 

 

i1=ii2=1i3=ii4=+1...ForkZi4k+1=ii4k+2=1i4k+3=ii4k=1soi2010=i4502+2=1

 

 

S2010=1i20101iS2010=111iError corrected hereS2010=21iS2010=21i×1+i1+iS2010=2(1+i)1i2S2010=2(1+i)11S2010=2(1+i)2S2010=1+i

 

 

 

1+i+i2+i3+i4+....i2009=1+i

 Oct 28, 2017
edited by Melody  Oct 28, 2017
 #6
avatar+118696 
0

PLEASE NOTE - I HAVE CORRECTED A CARELESS ERROR 

 

Thank you Alan for alerting me to it   laugh

Melody  Oct 28, 2017
 #3
avatar
0

Melody: Can you please explain this "goofy" answer by W/A? Thanks.

 

∑[1 + i^n], n=1 to 2009 =2,009 + i

 Oct 28, 2017
 #4
avatar+118696 
0

Nope I have no idea :)

Melody  Oct 28, 2017
 #5
avatar
0

OK. I think I found the mistake !! The first 1 should be outside the "Sigma" sign, but it still gives a different answer: 1 + ∑{ i^n}, n=1 to 2009 = 1 + i  ?????.

 Oct 28, 2017

2 Online Users