Everything cancels out except 2009 positive "1s" PLUS the last term of: i^2009 =i. Therefore the answer is: =2,009 + i
Compute 1+i+i^2+i^3+i^4+....i^2009
This is the sume of a GP
a=1, r=i, n=2010
sn=a(1−rn)1−rS2010=1(1−i2010)1−iS2010=1−i20101−i
i1=ii2=−1i3=−ii4=+1...Fork∈Zi4k+1=ii4k+2=−1i4k+3=−ii4k=1soi2010=i4∗502+2=−1
S2010=1−i20101−iS2010=1−−11−iError corrected hereS2010=21−iS2010=21−i×1+i1+iS2010=2(1+i)1−i2S2010=2(1+i)1−−1S2010=2(1+i)2S2010=1+i
1+i+i2+i3+i4+....i2009=1+i