+0  
 
+1
2781
1
avatar

Compute $\binom{223}{221}$.

 Mar 12, 2015

Best Answer 

 #1
avatar+26400 
+5

$\binom{223}{221}$

$$\boxed{
\small{\text{$\left( \begin{array}{c}n \\k\end{array} \right)
=\dfrac{n!}{k!\cdot (n-k)!}
$}} }$$

 

$$\small{\text{$\left( \begin{array}{c}223 \\ 221 \end{array} \right)=\dfrac{223!}{221!\cdot (223-221)!}= \dfrac{\not{221!} \cdot 222 \cdot 223 }{\not{221!}\cdot 2!}= \dfrac{222 \cdot 223 }{2}= 111\cdot 223 = 24753$}}$$

.
 Mar 13, 2015
 #1
avatar+26400 
+5
Best Answer

$\binom{223}{221}$

$$\boxed{
\small{\text{$\left( \begin{array}{c}n \\k\end{array} \right)
=\dfrac{n!}{k!\cdot (n-k)!}
$}} }$$

 

$$\small{\text{$\left( \begin{array}{c}223 \\ 221 \end{array} \right)=\dfrac{223!}{221!\cdot (223-221)!}= \dfrac{\not{221!} \cdot 222 \cdot 223 }{\not{221!}\cdot 2!}= \dfrac{222 \cdot 223 }{2}= 111\cdot 223 = 24753$}}$$

heureka Mar 13, 2015

2 Online Users