+0  
 
0
574
3
avatar

Compute $\dbinom{16}{4}-\dbinom{16}{12}$.

 Mar 18, 2015

Best Answer 

 #3
avatar+118723 
+5

You have both assumed that these are combinations - and you are most likely correct BUT

Couldn't those be vectors?

 

$$\begin{pmatrix}
16 \\
4
\end{pmatrix}
&-
\begin{pmatrix}
16 \\
12
\end{pmatrix}&=
\begin{pmatrix}
0 \\
-8
\end{pmatrix}$$

 Mar 19, 2015
 #1
avatar+23254 
+5

Another symbolism is:  16C416C12

16C4 =  16!/(4!·12!)

16C12 =  16!/(12!·4!)

So, how much is  16!/(4!·12!)  -  16!/(12!·4!) ?

 Mar 18, 2015
 #2
avatar+130516 
+5

Notice something....that in combinatorics....

C(n, k)  is always the same thing as  C(n, n-k)

So if n = 16 and k = 4

C(16, 4) = C(16, 16-4) = C(16, 12)

And....if two things are equal, then, when we subtract one from another, the result is 0 !!

 

  

 Mar 19, 2015
 #3
avatar+118723 
+5
Best Answer

You have both assumed that these are combinations - and you are most likely correct BUT

Couldn't those be vectors?

 

$$\begin{pmatrix}
16 \\
4
\end{pmatrix}
&-
\begin{pmatrix}
16 \\
12
\end{pmatrix}&=
\begin{pmatrix}
0 \\
-8
\end{pmatrix}$$

Melody Mar 19, 2015

0 Online Users