+0  
 
0
161
1
avatar

Compute 

\(1 + \frac{1}{3} + \frac{2}{3} + \frac{2}{9} + \frac{4}{9} + \frac{4}{27} + \frac{8}{27} + \frac{8}{81} + \dotsb\)

 

compute \(1 - 2 + 3 - 4 + \dots + 2005 - 2006 + 2007\)

Guest Feb 26, 2017
edited by Guest  Feb 26, 2017
 #1
avatar+19653 
0

compute 

1 - 2 + 3 - 4 + \(\dots \)+ 2005 - 2006 + 2007 = ?

 

Geometric series:

\(\begin{array}{|rcll|} \hline 1+x+x^2+x^3+x^4+x^5+\dots + x^n &=& \dfrac{1-x^{n+1}}{1-x} \qquad -1 < x < 1 \\ \hline \end{array} \)

 

Derivative:

\(\begin{array}{|rcll|} \hline 1+2x+3x^2+4x^3+5x^4+6x^5+\dots + nx^{n-1} &=& \dfrac{1-x^n[~n(1-x)+1~]}{(1-x)^2} \\ \hline \end{array} \)

 

x \(\rightarrow \) -x

\(\begin{array}{|rcll|} \hline 1-2x+3x^2-4x^3+5x^4-6x^5+-\dots + n(-x)^{n-1} &=& \dfrac{1-(-x)^n[~n(1+x)+1~]}{(1+x)^2} \\ \hline \end{array} \)

 

x = 1:

\(\begin{array}{|rcll|} \hline 1-2+3-4+5-6+-\dots + n(-1)^{n-1} &=& \dfrac{1-(-1)^n[~2n+1~]}{4} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \sum \limits_{n=1}^{2007}n (-1)^{n - 1} = 1 - 2 + 3 - 4 + \dots + 2005 - 2006 + 2007 \\\\ &=& \dfrac{1-(-1)^{2007}[~2\cdot2007+1~]}{4} \\\\ &=& \dfrac{1+4015}{4} \\\\ &=& \dfrac{4016}{4} \\\\ &\mathbf{=}& \mathbf{1004} \\ \hline \end{array} \)

 

 

laugh

heureka  Feb 27, 2017

13 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.