+0  
 
+1
36
4
avatar

The problem is: 

 

Find the set of values \(a\) for which the range of the function

\(f(x) = \frac{x^2 + a}{x + 1}\)

is the set of all real numbers.

 

I got \([-1 , ∞)\) by finding x in terms of y and a, then finding when that x value would be real.

 May 31, 2021
 #1
avatar
+1

[-1.inf) is correct.  Good job!

 May 31, 2021
 #2
avatar
0

Oh, it was incorrect for some reason.

Guest May 31, 2021
 #3
avatar
0

I got it right :)

Guest May 31, 2021
 #4
avatar+11622 
+1

Find the set of values a for which the range of the function

\(f(x) = \frac{x^2 + a}{x + 1} \)

is the set of all real numbers.

 

Hello Guest!

 

\(a\in \mathbb R\ |\ a\neq -1\)

laugh  !

 May 31, 2021

52 Online Users

avatar
avatar
avatar
avatar