My best shot at this was to find the derivative of f(x), but then how do we find the derivative of b? Do we assume it's a constant? Kinda confused on this. 

Julius  Feb 27, 2018

Determine the value of  b  if the slope of the tangent to  f(x) = (3x2 + 1)(2x2 + b)  at  x = -1  is  -16 .


\(f(x)\,=\,(3x^2+1)(2x^2+b) \\~\\ f(x)\,=\,6x^4+3bx^2+2x^2+b \\~\\ \frac{d}{dx}f(x)\,=\,\frac{d}{dx}(6x^4+3bx^2+2x^2+b) \\~\\ f'(x)\,=\,\frac{d}{dx}(6x^4+3bx^2+2x^2+b) \\~\\ f'(x)\,=\,\frac{d}{dx}6x^4+\frac{d}{dx}3bx^2+\frac{d}{dx}2x^2+\frac{d}{dx}b \)


We are trying to find the value of  b , so it must be a constant. As the value of  x  changes, the value of  b  doesn't change. So  \(\frac{d}{dx}b=0\)


\(f'(x)\,=\,24x^3+6bx+4x+0 \\~\\ f'(x)\,=\,24x^3+6bx+4x\)


The slope at  x = -1  is  -16 .  That means   f'(-1) = -16


\(f'(-1)\,=\,24(-1)^3+6b(-1)+4(-1) \\~\\ -16\,=\,24(-1)^3+6b(-1)+4(-1) \\~\\ -16\,=\,-24-6b-4 \\~\\ -16\,=\,-28-6b \\~\\ 12\,=\,-6b \\~\\ b=-2\)


To check this, here's a graph of  f(x)  and a line that passes through  f(x)  at the point where  x = -1  with a slope of  -16 . We can see that the line appears tangent to  f(x) .

hectictar  Feb 28, 2018

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.