Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
780
1
avatar+956 

My best shot at this was to find the derivative of f(x), but then how do we find the derivative of b? Do we assume it's a constant? Kinda confused on this. 

 Feb 27, 2018
 #1
avatar+9488 
+2

Determine the value of  b  if the slope of the tangent to  f(x) = (3x2 + 1)(2x2 + b)  at  x = -1  is  -16 .

 

f(x)=(3x2+1)(2x2+b) f(x)=6x4+3bx2+2x2+b ddxf(x)=ddx(6x4+3bx2+2x2+b) f(x)=ddx(6x4+3bx2+2x2+b) f(x)=ddx6x4+ddx3bx2+ddx2x2+ddxb

 

We are trying to find the value of  b , so it must be a constant. As the value of  x  changes, the value of  b  doesn't change. So  ddxb=0

 

f(x)=24x3+6bx+4x+0 f(x)=24x3+6bx+4x

 

The slope at  x = -1  is  -16 .  That means   f'(-1) = -16

 

f(1)=24(1)3+6b(1)+4(1) 16=24(1)3+6b(1)+4(1) 16=246b4 16=286b 12=6b b=2

 

To check this, here's a graph of  f(x)  and a line that passes through  f(x)  at the point where  x = -1  with a slope of  -16 . We can see that the line appears tangent to  f(x) .

 Feb 28, 2018

0 Online Users