We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
96
1
avatar

Given positive integers $x$ and $y$ such that $\frac{1}{x} + \frac{1}{2y} = \frac{1}{7}$, what is the least possible value of $xy$?

 Jun 21, 2019
 #1
avatar+102937 
+2

\(\frac{1}{x} + \frac{1}{2y} = \frac{1}{7}\)

 

[ x + 2y ]              1

_______   =       ___

    2xy                  7

 

7 [ x + 2y ]  =  2xy

 

7x + 14y  = 2xy

 

14y - 2xy  = - 7x

 

2xy - 14y  =  7x

 

y [2x - 14 ]  =  7x

 

y   =                7x

                    _______

                     2x  -14

 

If

 

x  = 8   y  =  28         

x = 14  y   = 7

x = 56  y  = 4

 

We can stop here since if y  = 3   then   

3(2x - 14 = 7x

6x - 42 = 7x

-42  = x

And x will also be negative if y = 2 or y = 1

 

So.....the minimum value of xy  =  14 *  7  =   98

 

 

cool cool cool

 Jun 21, 2019
edited by CPhill  Jun 21, 2019

15 Online Users

avatar