+0

# Confusing

0
171
4
+282

i hate this

lizagame  Feb 28, 2017
Sort:

#1
0

each quadrant is 90 degrees, so you will turn it 3 times, because 90 * 3 = 270

Guest Feb 28, 2017
#2
+84387
0

Rotating the figure 270° counter-clockwise is the same as rotating the figure 90° clockwise...

And each point will swap coordinates and both will have positive signs....so

(-2,1) → (1, 2)

(-4,2) → (2, 4)

(-3,5) → (5, 3)

C is correct

CPhill  Feb 28, 2017
#3
+91972
0

Try watching this.  There are a lot of resourced on the web to help with mathematical concepts.

Melody  Feb 28, 2017
#4
+19096
+5

Matrix Rotation counterclockwise:

$$\begin{array}{|rcll|} \hline \begin{pmatrix} \cos(\varphi) & \sin (\varphi) \\ -\sin(\varphi) & \cos (\varphi) \\ \end{pmatrix} \stackrel{\varphi=270^{\circ}} \rightarrow \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix} \\ \hline \end{array}$$

The point P becomes to P':

$$\begin{array}{|rcll|} \hline \binom{x}{y}\cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix} = \binom{y}{-x} \\ \hline \end{array}$$

$$\text{Let}\ X =\binom{-2}{1} \\ \text{Let}\ Y =\binom{-4}{2} \\ \text{Let}\ Z =\binom{-3}{5} \\$$

$$\begin{array}{|rcll|} \hline X'=\binom{-2}{1}\cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix} = \binom{1}{2} \\ Y'=\binom{-4}{2}\cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix} = \binom{2}{4} \\ Z'=\binom{-3}{5}\cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix} = \binom{5}{3} \\ \hline \end{array}$$