We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
46
1
avatar+20 

Let F_1 = ( -3, 1 - sqrt(5)/4) and F_ 2= ( -3, 1 + sqrt(5)/4). Then the set of points P$ such that |PF_1 - PF_2| = 1 form a hyperbola. The equation of this hyperbola can be written as ((y - k)^2)/(a^2) - ((x - h)^2)/(b^2) = 1,\]where a, b > 0. Find h + k + a + b.

 

 

Thanks for your time!

 Nov 29, 2019
 #1
avatar+10795 
+1

Let F_1 = ( -3, 1 - sqrt(5)/4) and F_ 2= ( -3, 1 + sqrt(5)/4). Then the set of points P$ such that |PF_1 - PF_2| = 1 form a hyperbola. The equation of this hyperbola can be written as ((y - k)^2)/(a^2) - ((x - h)^2)/(b^2) = 1,\]where a, b > 0. Find h + k + a + b.

laugh

 Nov 29, 2019

37 Online Users

avatar