+0  
 
0
840
1
avatar+101 

Let F_1 = ( -3, 1 - sqrt(5)/4) and F_ 2= ( -3, 1 + sqrt(5)/4). Then the set of points P$ such that |PF_1 - PF_2| = 1 form a hyperbola. The equation of this hyperbola can be written as ((y - k)^2)/(a^2) - ((x - h)^2)/(b^2) = 1,\]where a, b > 0. Find h + k + a + b.

 

 

Thanks for your time!

 Nov 29, 2019
 #1
avatar+12530 
+1

Let F_1 = ( -3, 1 - sqrt(5)/4) and F_ 2= ( -3, 1 + sqrt(5)/4). Then the set of points P$ such that |PF_1 - PF_2| = 1 form a hyperbola. The equation of this hyperbola can be written as ((y - k)^2)/(a^2) - ((x - h)^2)/(b^2) = 1,\]where a, b > 0. Find h + k + a + b.

laugh

 Nov 29, 2019

0 Online Users