+0

# Conjunto numérico imaginario

0
356
2

Mañana tengo exámen y no entiendo como se hacen las potencias de los numeros imaginarios. HEEEEELP ME!!!!

Es este:          (-2-4i) ^ 2

Se el resultado pero no se como es el procedimiento para realizar el ejercio!!!! Ayudaa

Jun 4, 2014

#2
+111970
+5
Tomorrow   I have  a  test   and   do not   understand   how   the   powers   of   the   imaginary numbers   are   made .  HEEEEELP I!

It is this: (- 2 - 4i) ^ 2

Is the result but not be as it is the procedure for the exercise! Ayudaa

by Anonymous (3 hours ago)

This is just a perfect square

$$(a+b)^2=a^2+2ab+b^2$$

--------------------------------

$$\begin{array}{rll} (-2-4i)^2&=&(-2)^2+2*(-2)*(-4i)+(-4i)^2\\ &=& 4+8i+16i^2\\ &=&4+8i-16\\ &=&-12+8i \end{array}$$

Jun 4, 2014

#1
+11
0

$${{\mathtt{xi}}}^{{\mathtt{2}}} = {\mathtt{\,-\,}}\left({{\mathtt{x}}}^{{\mathtt{2}}}\right) \Rightarrow \left\{ \begin{array}{l}{\mathtt{xi}} = {\mathtt{\,-\,}}\left({i}{\mathtt{\,\times\,}}{\mathtt{x}}\right)\\ {\mathtt{xi}} = {i}{\mathtt{\,\times\,}}{\mathtt{x}}\\ \end{array} \right\}$$

.
Jun 4, 2014
#2
+111970
+5
Tomorrow   I have  a  test   and   do not   understand   how   the   powers   of   the   imaginary numbers   are   made .  HEEEEELP I!

It is this: (- 2 - 4i) ^ 2

Is the result but not be as it is the procedure for the exercise! Ayudaa

by Anonymous (3 hours ago)

This is just a perfect square

$$(a+b)^2=a^2+2ab+b^2$$

--------------------------------

$$\begin{array}{rll} (-2-4i)^2&=&(-2)^2+2*(-2)*(-4i)+(-4i)^2\\ &=& 4+8i+16i^2\\ &=&4+8i-16\\ &=&-12+8i \end{array}$$

Melody Jun 4, 2014