+0  
 
0
321
2
avatar

Mañana tengo exámen y no entiendo como se hacen las potencias de los numeros imaginarios. HEEEEELP ME!!!!

Es este:          (-2-4i) ^ 2

Se el resultado pero no se como es el procedimiento para realizar el ejercio!!!! Ayudaa 

 Jun 4, 2014

Best Answer 

 #2
avatar+109520 
+5
Tomorrow   I have  a  test   and   do not   understand   how   the   powers   of   the   imaginary numbers   are   made .  HEEEEELP I!

It is this: (- 2 - 4i) ^ 2

Is the result but not be as it is the procedure for the exercise! Ayudaa

by Anonymous (3 hours ago)

This is just a perfect square  

$$(a+b)^2=a^2+2ab+b^2$$

--------------------------------

$$\begin{array}{rll}
(-2-4i)^2&=&(-2)^2+2*(-2)*(-4i)+(-4i)^2\\
&=& 4+8i+16i^2\\
&=&4+8i-16\\
&=&-12+8i
\end{array}$$

.
 Jun 4, 2014
 #1
avatar+11 
0

$${{\mathtt{xi}}}^{{\mathtt{2}}} = {\mathtt{\,-\,}}\left({{\mathtt{x}}}^{{\mathtt{2}}}\right) \Rightarrow \left\{ \begin{array}{l}{\mathtt{xi}} = {\mathtt{\,-\,}}\left({i}{\mathtt{\,\times\,}}{\mathtt{x}}\right)\\
{\mathtt{xi}} = {i}{\mathtt{\,\times\,}}{\mathtt{x}}\\
\end{array} \right\}$$

.
 Jun 4, 2014
 #2
avatar+109520 
+5
Best Answer
Tomorrow   I have  a  test   and   do not   understand   how   the   powers   of   the   imaginary numbers   are   made .  HEEEEELP I!

It is this: (- 2 - 4i) ^ 2

Is the result but not be as it is the procedure for the exercise! Ayudaa

by Anonymous (3 hours ago)

This is just a perfect square  

$$(a+b)^2=a^2+2ab+b^2$$

--------------------------------

$$\begin{array}{rll}
(-2-4i)^2&=&(-2)^2+2*(-2)*(-4i)+(-4i)^2\\
&=& 4+8i+16i^2\\
&=&4+8i-16\\
&=&-12+8i
\end{array}$$

Melody Jun 4, 2014

20 Online Users

avatar