+0  
 
0
304
1
avatar+12 

Consider a random variable X such that P(X= -1) = P(X= 1) = ½

a. Compute E(x)

b. Compute var(x)

c. Compute P(/X-μ/≥1)

d. Show that Chebyshev's inequality is an equality for P(/X-μ/≥1).

uprewardz  Apr 18, 2015

Best Answer 

 #1
avatar+26322 
+5

a.  E(x) = (1/2)*(-1) + (1/2)*(1) = 0

 

b. var(x) = ((-1 - 0)2 + (1 - 0)2)/2 = 1

 

c. P(|x - E(x)|>1) = 0,     P(|x - E(x)|=1) =   1

 

d.  See c.

Alan  Apr 19, 2015
Sort: 

1+0 Answers

 #1
avatar+26322 
+5
Best Answer

a.  E(x) = (1/2)*(-1) + (1/2)*(1) = 0

 

b. var(x) = ((-1 - 0)2 + (1 - 0)2)/2 = 1

 

c. P(|x - E(x)|>1) = 0,     P(|x - E(x)|=1) =   1

 

d.  See c.

Alan  Apr 19, 2015

5 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details